597
Views
27
CrossRef citations to date
0
Altmetric
Articles

Dual-band operation of a circularly polarized radiator on a finite artificial magnetic conductor surface

&
Pages 880-892 | Received 27 Nov 2013, Accepted 10 Feb 2014, Published online: 12 Mar 2014

References

  • Sievenpiper D, Zhang RFJ, Broas NG, Alexopolous E, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microwave Theor. Tech. 1999;47:2059–2074.
  • Clavijo S, Diaz R, McKinzie W. Design methodology for Sievenpiper high-impedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas. IEEE Trans. Antennas Propag. 2003;51:2678–2690.
  • Hansen R. Effects of a high-impedance screen on a dipole antenna. IEEE Antennas Wirel. Propag. Lett. 2002;1:46–49.
  • Yang F, Rahmat-Samii Y. Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications. IEEE Trans. Antennas Propag. 2003;51:2691–2703.
  • Mosallaei H, Sarabandi K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 2004;52:2403–2414.
  • Abedin M, Ali M. Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultrathin directional dipoles. IEEE Trans. Antennas Propag. 2005;53:3664–3672.
  • Azad M, Ali M. Novel wideband directional dipole antenna on a mushroom like EBG structure. IEEE Trans. Antennas Propag. 2008;56:1242–1250.
  • McMichael I, Zaghloul A, Mirotznik M. A method for determining optimal EBG reflection phase for low profile dipole antennas. IEEE Trans. Antennas Propag. 2013;61:2411–2417.
  • Yeo L, Kim D. Design of a wideband artificial magnetic conductor (AMC) ground plane for low-profile antennas. J. Electromagn. Waves Appl. 2008;22:2125–2134.
  • Costa F, Luukkonen O, Simovski C, Monorchio A, Tretyakov S, Maagt P. TE surface wave resonances on high-impedance surface based antennas: analysis and modeling. IEEE Trans. Antennas Propag. 2001;59:3588–3596.
  • Zhang Y, Wang B, Shao W, Yu W, Mittra R. Artificial ground planes for performance enhancement of microstrip antennas. J. Electromagn. Waves Appl. 2011;25:597–606.
  • Elek F, Abhari R, Eleftheriades G. A uni-directional ring-slot antenna achieved by using an electromagnetic band-gap surface. IEEE Trans. Antennas Propag. 2005;53:181–190.
  • Joubert J, Vardaxoglou J, Whittow W, Odendaal J. CPW-fed cavity-backed slot radiator loaded with an AMC reflector. IEEE Trans. Antennas Propag. 2012;60:735–742.
  • Vallecchi A, De Luis J, Capolino F, De Flaviis F. Low profile fully planar folded dipole antenna on a high impedance surface. IEEE Trans. Antennas Propag. 2012;60:51–62.
  • Cure D, Weller T, Miranda F. Study of a low-profile 2.4-GHz planar dipole antenna using a high-impedance surface with 1-D varactor tuning. IEEE Trans. Antennas Propag. 2013;61:506–515.
  • Park I, Kim D. High-gain antenna using an intelligent artificial magnetic conductor ground plane. J. Electromagn. Waves Appl. 2013;27:1602–1610.
  • Nakano H, Hitosugi K, Tatsuzawa N, Togashi D, Mimaki H, Yamauchi J. Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an electromagnetic band-gap reflector with a spiral antenna. IEEE Trans. Antennas Propag. 2005;53:191–199.
  • Nakano H, Kikkawa K, Kondo N, Iitsuka Y, Yamauchi J. Low-profile equiangular spiral antenna backed by an EBG reflector. IEEE Trans. Antennas Propag. 2009;57:1309–1318.
  • Baracco J, Salghetti-Drioli L, de Maagt P. AMC low profile wideband reference antenna for GPS and GALILEO systems. IEEE Trans. Antennas Propag. 2008;56:2540–2547.
  • Bernard L, Chertier G, Sauleau R. Wideband circularly polarized patch antennas on reactive impedance substrates. IEEE Antennas Wirel. Propag. Lett. 2011;10:1015–1018.
  • Dong Y, Toyao H, Itoh T. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Trans. Antennas Propag. 2011;59:4329–4333.
  • Dong Y, Toyao H, Itoh T. Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans. Antennas Propag. 2012;60:772–785.
  • Agarwal K, Nasimuddin, Alphones A. RIS-based compact circularly polarized microstrip antennas. IEEE Trans. Antennas Propag. 2013;61:547–554.
  • Xu H, Wang G, Liang J, Qi M, Gao Z. Compact circularly polarized antennas combining meta-surfaces and strong space-filling meta-resonators. IEEE Trans. Antennas Propag. 2013;61:3442–3450.
  • Agarwal K. Wideband circularly polarized AMC reflector backed aperture antenna. IEEE Trans. Antennas Propag. 2013;61:1456–1461.
  • Nakamura R, Fukusako T. Broadband design of circularly polarized microstrip patch antenna using artificial ground structure with rectangular unit cells. IEEE Trans. Antennas Propag. 2011;59:2103–2110.
  • Ta S-X, Ziolkowski RW, Park I. Dual-band wide-beam crossed asymmetric dipole antenna for GPS applications. Electron. Lett. 2012;48:1580–1581.
  • Ta S-X, Choo H, Park I, Ziolkowski R. Multi-band, wide-beam, circularly polarized, crossed, asymmetrically barbed dipole antennas for GPS applications. IEEE Trans. Antenna Propag. 2013;57:2904–2912.
  • Ta S-X, Park I, Ziolkowski R. Circularly polarized crossed dipole on an HIS for 2.4/5.2/5.8-GHz WLAN applications. IEEE Antennas Wirel. Propag. Lett. 2012;12:1464–1467.
  • Ta S-X, Park I. Circularly polarized dual-band crossed dipole antenna on an artificial magnetic conductor reflector. International Congress on Advanced Electromagnetic Materials in Microwaves and Optics; Bordeaux, France; Sep 2013.
  • Ta S-X, Han J, Park I. Compact circularly polarized composite cavity-backed crossed dipole for GPS applications. J. Electromagn. Eng. Sci. 2013;13:44–50.
  • Lamminen A, Vimpari A, Saily J. UC-EBG on LTCC for 60-GHz frequency band antenna applications. IEEE Trans. Antennas Propag. 2009;57:2904–2912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.