3,245
Views
104
CrossRef citations to date
0
Altmetric
Invited Review Article

Metamaterial-based perfect absorbers

, , , &
Pages 1541-1580 | Received 27 Jun 2014, Accepted 08 Jul 2014, Published online: 08 Aug 2014

References

  • Walser RM. Electromagnetic metamaterials. Proc. SPIE. 2001;4467:1–15.
  • Defense Advanced Research Projects Agency. [cited 2008 Nov 11]. Available from: http://www.darpa.mil/DARPATech2002/presentations/dso_pdf/speeches/BROWNING.pdf
  • Zheludev NI. The road ahead for metamaterials. Science. 2010;328:582–583.
  • Ung B. Metamaterials: a metareview. Available from: http://www.polymtl.ca/phys/doc/art_2_2.pdf (accessed 2014 Mar 26).
  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305:788–792.
  • Seddon N, Bearpark T. Observation of the inverse doppler effect. Science. 2003;302:1537–1540.
  • Pendry JB. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000;85:3966–3969.
  • Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314:977–980.
  • Shalaev VM. Optical negative-index metamaterials. Nat. Photon. 2007;1:41–48.
  • Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory metamaterials. Science. 2009;325:1518–1521.
  • Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 2008;7:31–37.
  • Tuong PV, Yoo YJ, Park JW, Kim YJ, Kim KW, Kim YH, Cheong H, Chen LY, Lee YP. Multi-plasmon-induced perfect absorption at the third resonance in metamaterials. Comp. Mater. Sci. Forthcoming.
  • Wang X, Luo C, Hong G, Zhao X. Metamaterial optical refractive index sensor detected by the naked eye. Appl. Phys. Lett. 2013;102:091902.
  • Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R. Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 2012;37:371–373.
  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10:2342–2348.
  • Niesler FBP, Gansel JK, Fischbach S, Wegener M. Metamaterial metal-based bolometers. Appl. Phys. Lett. 2012;100:203508.
  • Wang B, Teo KH, Nishino T, Yerazunis W, Barnwell J, Zhang J. Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 2011;98:254101.
  • Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011;2:517.
  • Hedayati M, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency. Appl. Phys. A. 2012;109:769–773.
  • Hall AS, Faryad M, Barber GD, Liu L, Erten S, Mayer TS, Lakhtakia A, Mallouk TE. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal. ACS Nano. 2013;7:4995–5007.
  • Tuong P, Park J, Lam V, Jang W, Nikitov S, Lee Y. Dielectric and ohmic losses in perfectly absorbingmetamaterials. Opt. Comm. 2013;295:17–20.
  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys. Rev. Lett. 2008;100:207402.
  • Yoo YJ, Zheng HY, Kim YJ, Rhee JY, Kang JH, Kim KW, Cheong H, Kim YH, Lee YP. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 2014;105:041902.
  • Liu X, Starr T, Starr AF, Padilla WJ. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 2010;104:207403.
  • Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 2011;107:045901.
  • Hao J, Zhou L, Qiu M. Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B. 2011;83:165107.
  • Peng XY, Wang B, Lai S, Zhang DH, Teng JH. Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. Opt. Express. 2012;20:27756–27765.
  • Cheng Y, Nie Y, Gong R, Yang H. Multi-band metamaterial absorber using cave-cross resonator. Eur. Phys. J. Appl. Phys. 2011;56:31301.
  • Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS. A terahertz polarization insensitive dual band metamaterial absorber. Opt. Lett. 2011;36:945–947.
  • Li H, Yuan LH, Zhou B, Shen XP, Cheng Q, Cui TJ. Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 2011;110:014909.
  • Park JW, Van Tuong P, Rhee JY, Kim KW, Jang WH, Choi EH, Chen LY, Lee Y. Multi-band metamaterial absorber based on the arrangement of donut-type resonators. Opt. Express. 2013;21:9691–9702.
  • Yoo YJ, Kim YJ, Van Tuong P, Rhee JY, Kim KW, Jang WH, Kim YH, Cheong H, Lee YP. Polarization-independent dual-band perfect absorber utilizing multiple magnetic resonances. Opt. Express. 2013;21:32484–32490.
  • Cui Y, Xu J, Hung Fung K, Jin Y, Kumar A, He S, Fang NX. A thin film broadband absorber based on multi-sized nanoantennas. Appl. Phys. Lett. 2011;99:253101.
  • Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo IC, Chen S, Huang TJ. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt. Express. 2011;19:15221–15228.
  • Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B. 2009;79:125104.
  • Zheng HY, Jin XR, Park JW, Lu YH, Rhee JY, Jang WH, Cheong H, Lee YP. Tunable dual-band perfect absorbers based on extraordinary optical transmission and Fabry-Perot cavity resonance. Opt. Express. 2012;20:24002–24009.
  • Tuong PV, Park JW, Rhee JY, Kim KW, Jang WH, Cheong H, Lee YP. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Appl. Phys. Lett. 2013;102:081122.
  • Zhu B, Feng Y, Zhao J, Huang C, Jiang T. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves. Appl. Phys. Lett. 2010;97:051906.
  • Tuong P, Park J, Lam V, Kim K, Cheong H, Jang W, Lee Y. Simplified perfect absorber structure. Comput. Mater. Sci. 2012;61:243–247.
  • Chen S, Cheng H, Yang H, Li J, Duan X, Gu C, Tian J. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime. Appl. Phys. Lett. 2011;99:253104.
  • Shen X, Cui TJ, Zhao J, Ma HF, Jiang WX, Li H. Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express. 2011;19:9401–9407.
  • Ding F, Cui Y, Ge X, Jin Y, He S. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012;100:103506.
  • Sun J, Liu L, Dong G, Zhou J. An extremely broad band metamaterial absorber based on destructive interference. Opt. Express. 2011;19:21155–21162.
  • Xu HX, Wang GM, Qi MQ, Liang JG, Gong JQ, Xu ZM. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys. Rev. B. 2012;86:205104.
  • Cheng H, Chen S, Yang H, Li J, An X, Gu C, Tian J. A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime. J. Opt. 2012;14:085102.
  • Zhong J, Huang Y, Wen G, Sun H, Wang P, Gordon O. Single-/dual-band metamaterial absorber based on cross-circular-loop resonator with shorted stubs. Appl. Phys. A. 2012;108:329–335.
  • Lee HM, Wu JC. A wide-angle dual-band infrared perfect absorber based on metal-dielectric-metal split square-ring and square array. J. Phys. D: Appl. Phys. 2012;45:205101.
  • Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express. 2008;16:7181–7188.
  • Huang L, Chen H. Multi-band and polarization insensitive metamaterial absorber. Prog. Electromagn. Res. 2011;113:103–110.
  • Zhu L, Meng FY, Fu JH, Wu Q, Hua J. Multi-band slow light metamaterial. Opt. Express. 2012;20:4494–4502.
  • Meng FY, Wu Q, Erni D, Wu K, Lee JC. Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microw. Theory Tech. 2012;60:3013–3022.
  • Brazhnikov D, Taichenachev A, Yudin V. Polarization method for controlling a sign of electromagnetically-induced transparency/absorption resonances. Eur. Phys. J. D. 2011;63:315–325.
  • Zhang W, Liu AQ, Zhu WM, Li EP, Tanoto H, Wu QY, Teng JH, Zhang XH, Tsai MLJ, Lo GQ, Kwong DL. Micromachined switchable metamaterial with dual resonance. Appl. Phys. Lett. 2012;101:151902.
  • Chen HT, Padilla WJ, Zide JMO, Bank SR, Gossard AC, Taylor AJ, Averitt RD. Ultrafast optical switching of terahertz metamaterials fabricated on eras/gaas nanoisland superlattices. Opt. Lett. 2007;32:1620–1622.
  • Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Azad AK, Taylor AJ, Chen HT. Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers. Appl. Phys. Lett. 2012;101:101102.
  • Ruck GT, Barrick DE, Stuart WD, Krichbaum CK. Radar cross section handbook. Vol. 2. Plenum: New York; 1970.
  • Munk BA. Frequency selective surfaces: theory and design. Wiley-Interscience: New York; 2000.
  • Ordal MA, Long LL, Bell RJ, Bell SE, Bell RR, Alexander RW, Ward CA. Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 1983;22:1099–1119.
  • Bruggeman DAG. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen. Ann. Phys. (Leipzig). 1935;24:636–679.
  • Garnett J. Colours in metal glasses and in metallic films. Phil. Trans. R Soc. Lond. 1904;203:636–679.
  • Resink S, Hondebrink E, Steenbergen W. Towards acousto-optic tissue imaging with nanosecond laser pulses. Opt. Express. 2014;22:3564–3571.
  • Wu Y, Li J, Zhang ZQ, Chan CT. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B. 2006;74:085111.
  • Slovick BA, Yu ZG, Krishnamurthy S. Generalized effective-medium theory for metamaterials. Phys. Rev. B. 2014;89:155118.
  • Davidson DB. Computational electromagnetics for rf and microwave engineering. 2nd ed. Cambridge: Cambridge University Press; 2010.
  • Zhou J, Zhang L, Tuttle G, Koschny T, Soukoulis CM. Negative index materials using simple short wire pairs. Phys. Rev. B. 2006;73:041101.
  • Lam VD, Kim JB, Lee SJ, Lee YP, Rhee JY. Dependence of the magnetic-resonance frequency on the cut-wire width of cut-wire pair medium. Opt. Express. 2007;15:16651–16656.
  • Lam VD, Kim JB, Tung NT, Lee SJ, Lee YP, Rhee JY. Dependence of the distance between cut-wire-pair layers on resonance frequencies. Opt. Express. 2008;16:5934–5941.
  • Pang Yq, Zhou Yj, Wang J. Equivalent circuit method analysis of the influence of frequency selective surface resistance on the frequency response of metamaterial absorbers. J. Appl. Phys. 2011;110:023704.
  • Zhang N, Zhou P, Cheng D, Weng X, Xie J, Deng L. Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Opt. Lett. 2013;38:1125–1127.
  • Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 2012;12:1443–1447.
  • Bossard JA, Lin L, Yun S, Liu L, Werner DH, Mayer TS. Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano. 2014;8:1517–1524.
  • Zhu W, Zhao X. Metamaterial absorber with dendritic cells at infrared frequencies. J. Opt. Soc. Am. B. 2009;26:2382–2385.
  • Alici KB, Turhan AB, Soukoulis CM, Ozbay E. Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration. Opt. Express. 2011;19:14260–14267.
  • Tuong PV, Park JW, Rhee JY, Kim KW, Cheong H, Jang WH, Lee YP. Symmetric metamaterials based on flower-shaped structure. Mater. Chem. Phys. 2013;141:535–539.
  • Zhu W, Zhao X, Gong B, Liu L, Su B. Optical metamaterial absorber based on leaf-shaped cells. Appl. Phys. A. 2011;102:147–151.
  • Wang C, Yu S, Chen W, Sun C. Highly efficient light-trapping structure design inspired by natural evolution. Sci. Rep. 2013;3:1025. doi:10.1038/srep01025.
  • Yablonovitch E. Statistical ray optics. J. Opt. Soc. Am. 1982;72:899–907.
  • Lee Y, Tuong P, Zheng H, Rhee J, Jang W. An application of metamaterials: perfect absorbers. J. Korean Phys. Soc. 2012;60:1203–1206.
  • Tonouchi M. Cutting-edge terahertz technology. Nat. Photon. 2007;1:97–105.
  • Borri S, Patimisco P, Sampaolo A, Beere HE, Ritchie DA, Vitiello MS, Scamarcio G. Terahertz quartz enhanced photo-acoustic sensor. Appl. Phys. Lett. 2013;103:02110.
  • Tao H, Padilla WJ, Zhang X, Averitt RD. Recent progress in electromagnetic metamaterial devices for terahertz applications. IEEE J. Sel. Top. Quant. Electron. 2011;17:92–101.
  • Williams GP. Filling the thz gap – high power sources and applications. Reports Progr. Phys. 2006;69:301–326.
  • Chen HT, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD. Active terahertz metamaterial devices. Nature. 2006;444:597–600.
  • Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter. 1998;10:4785–4809.
  • Wiltshire M. Chiral swiss rolls. In: Zouhdi S, Sihvola A, Vinogradov AP, editors. Metamaterials and plasmonics: fundamentals, modelling, applications. Marrakech (Morocco): Springer-Verlag; 2009. p. 191–200.
  • Wiltshire MCK, Pendry JB, Hajnal JV. Chiral swiss rolls show a negative refractive index. J. Phys.: Condens. Matter. 2009;21:292201.
  • Dolling G, Enkrich C, Wegener M, Zhou JF, Soukoulis CM, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Opt. Lett. 2005;30:3198–3200.
  • Imhof C, Zengerle R. Pairs of metallic crosses as a left-handed metamaterial with improved polarization properties. Opt. Express. 2006;14:8257–8262.
  • Powell DA, Shadrivov IV, Kivshar YS. Cut-wire-pair structures as two-dimensional magnetic metamaterials. Opt. Express. 2008;16:15185–15190.
  • Dolling G, Klein MW, Wegener M, Schädle A, Kettner B, Burger S, Linden S. Negative beam displacements from negative-index photonic metamaterials. Opt. Express. 2007;15:14219–14227.
  • Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X. Three-dimensional optical metamaterial with a negative refractive index. Nature. 2008;455:376–379.
  • Zhou J, Koschny T, Kafesaki M, Soukoulis CM. Negative refractive index response of weakly and strongly coupled optical metamaterials. Phys. Rev. B. 2009;80:035109.
  • Guo H, Liu N, Fu L, Meyrath TP, Zentgraf T, Schweizer H, Giessen H. Resonance hybridization in double split-ring resonator metamaterials. Opt. Express. 2007;15:12095–12101.
  • Li D, Xie Y, Zhang J, Li J, Chen Z. Multilayer filters with split-ring resonator metamaterials. J. Electromagn. Waves Appl. 2008;22:1420–1429.
  • Wang J, Qu S, Xu Z, Zhang J, Ma H, Yang Y, Gu C. Broadband planar left-handed metamaterials using split-ring resonator pairs. Photon. Nanostruct. : Fund. Appl. 2009;7:108–113.
  • Li Z, Ma Y, Huang R, Singh R, Gu J, Tian Z, Han J, Zhang W. Manipulating the plasmon-induced transparency in terahertz metamaterials. Opt. Express. 2011;19:8912–8919.
  • Kenanakis G, Zhao R, Katsarakis N, Kafesaki M, Soukoulis CM, Economou EN. Optically controllable thz chiral metamaterials. Opt. Express. 2014;22:12149–12159.
  • Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the drude damping limit. Nat. Mater. 2009;8:758–762.
  • Chen CY, Un IW, Tai NH, Yen TJ. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt. Express. 2009;17:15372–15380.
  • Christ A, Martin OJF, Ekinci Y, Gippius NA, Tikhodeev SG. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Lett. 2008;8:2171–2175.
  • Chen HT, O’Hara JF, Taylor AJ, Averitt RD, Highstrete C, Lee M, Padilla WJ. Complementary planar terahertz metamaterials. Opt. Express. 2007;15:1084–1095.
  • Driscoll T, Andreev GO, Basov DN, Palit S, Cho SY, Jokerst NM, Smith DR. Tuned permeability in terahertz split-ring resonators for devices and sensors. Appl. Phys. Lett. 2007;91:062511.
  • Ekmekci E, Topalli K, Akin T, Turhan-Sayan G. A tunable multi-band metamaterial design using micro-split srr structures. Opt. Express. 2009;17:16046–16058.
  • O’Hara JF, Singh R, Brener I, Smirnova E, Han J, Taylor AJ, Zhang W. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt. Express. 2008;16:1786–1795.
  • Singh R, Rockstuhl C, Lederer F, Zhang W. Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys. Rev. B. 2009;79:085111.
  • Bai Q, Liu C, Chen J, Cheng C, Kang M, Wang HT. Tunable slow light in semiconductor metamaterial in a broad terahertz regime. J. Appl. Phys. 2010;107:093104.
  • Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X. Terahertz magnetic response from artificial materials. Science. 2004;303:1494–1496.
  • Wang ZJ, Guo SH, Li JJ, Wang FY. Dual-band terahertz filters with sharp slope rate of edge based on two-layered composite metamaterial. J. Chem. Pharm. Res. 2014;6:96–100.
  • Tao H, Bingham CM, Pilon D, Fan K, Strikwerda AC, Shrekenhamer D, Padilla WJ, Zhang X, Averitt RD. A dual band terahertz metamaterial absorber. J. Phys. D : Appl. Phys. 2010;43:225102.
  • Park D, Park S, Park I, Ahn Y. Dielectric substrate effect on the metamaterial resonances in terahertz frequency range. Curr. Appl. Phys. 2014;14:570–574.
  • Huang L, Chowdhury DR, Ramani S, Reiten MT, Luo SN, Taylor AJ, Chen HT. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Opt. Lett. 2012;37:154–156.
  • Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W. Jun Cui T. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett. 2012;101:154102.
  • Wen Y, Ma W, Bailey J, Matmon G, Yu X, Aeppli G. Polarization-independent dual-band terahertz metamaterial absorbers based on gold/parylene-c/silicide structure. Appl. Opt. 2013;52:4536–4540.
  • Luo L, Chatzakis I, Wang J, Niesler FBP, Wegener M, Koschny T, et al. Broadband terahertz generation from metamaterials. Nat. Commun. 2014;5:3055.
  • Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science. 2006;313:502–504.
  • Linden S, Niesler FBP, Förstner J, Grynko Y, Meier T, Wegener M. Collective effects in second-harmonic generation from split-ring-resonator arrays. Phys. Rev. Lett. 2012;109:015502.
  • Ozbay E. The magical world of photonic metamaterials. Opt. Photon. News. 2008;19:22–27.
  • Landau LD, Liftshitz EM, Pitaevskii LP. Electrodynamics of continuous media. 2nd ed. Pergamon: Oxford; 1984.
  • Avitzour Y, Urzhumov YA, Shvets G. Wide-angle infrared absorber based on a negative-index plasmonic metamaterial. Phys. Rev. B. 2009;79:045131.
  • Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 2012;101:154102.
  • Becker J, Trügler A, Jakab A, Hohenester U, Sönnichsen C. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing. Plasmonics. 2010;5:161–167.
  • Wang J, Chen Y, Hao J, Yan M, Qiu M. Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared. J. Appl. Phys. 2011;109:074510.
  • Liu H, Zhao X, Yang Y, Li Q, Lv J. Fabrication of infrared left-handed metamaterials via double template-assisted electrochemical deposition. Adv. Mater. 2008;20:2050–2054.
  • Cui Y, Xu J, He S, Fang N. Plasmon-assisted optical curtains. Plasmonics. 2010;5:369–374.
  • Moharam MG, Gaylord TK. Rigorous coupled-wave analysis of metallic surface-relief gratings. J. Opt. Soc. Am. A. 1986;3:1780–1787.
  • Dayal G, Ramakrishna SA. Design of highly absorbing metamaterials for infrared frequencies. Opt. Express. 2012;20:17503–17508.
  • Alici KB, Serebryannikov AE, Ozbay E. Photonic magnetic metamaterial basics. Photon. Nanostruct. 2011;9:15–21.
  • Narimanov EE, Kildishev AV. Optical black hole: broadband omnidirectional light absorber. Appl. Phys. Lett. 2009;95:041106.
  • Leonhardt U, Piwnicki P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 2000;84:822–825.
  • Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature. 1999;397:594–598.
  • Cheng Q, Cui TJ, Jiang WX, Cai BG. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys. 2010;12:063006.
  • Mirza IO, Shi S, Sharkawy A, Prather DW. Metamaterial-based tunable absorber in the infrared regime. Proc. SPIE. 2012;8261:82610R.
  • Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 1968;216:398–410.
  • Hessel A, Oliner AA. A new theory of wood’s anomalies on optical gratings. Appl. Opt. 1965;4:1275–1297.
  • Wirgin A, López-Ríos T. Can surface-enhanced raman scattering be caused by waveguide resonances? Opt. Comm. 1984;48:416–420.
  • Bonod N, Tayeb G, Maystre D, Enoch S, Popov E. Total absorption of light by lamellar metallic gratings. Opt. Express. 2008;16:15431–15438.
  • Le Perchec J, Quémerais P, Barbara A, López-Ríos T. Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light? Phys. Rev. Lett. 2008;100:066408.
  • Botten L, Craig M, McPhedran R, Adams J, Andrewartha J. The finitely conducting lamellar diffraction grating. Opt. Acta: Int. J. Opt. 1981;28:1087–1102.
  • Botten L, Craig M, McPhedran R, Adams J, Andrewartha J. Highly conducting lamellar diffraction grating. Opt. Acta: Int. J. Opt. 1981;28:1103–1106.
  • Sheng P, Stepleman RS, Sanda PN. Exact eigenfunctions for square-wave gratings: application to diffraction and surface-plasmon calculations. Phys. Rev. B. 1982;26:2907–2916.
  • Mason JA, Smith S, Wasserman D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl. Phys. Lett. 2011;98:241105.
  • Greffet JJ, Carminati R, Joulain K, Mulet JP, Mainguy S, Chen Y. Coherent emission of light by thermal sources. Nature. 2002;416:61–64.
  • Popov E, Maystre D, McPhedran RC, Nevière M, Hutley M, Derrick GH. Total absorption of unpolarized light by crossed gratings. Opt. Express. 2008;16:6146–6155.
  • Monticone F, Alù A. Metamaterials and plasmonics: from nanoparticles to nanoantenna arrays, metasurfaces, and metamaterials. Chin. Phys. B. 2014;23:047809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.