1,740
Views
36
CrossRef citations to date
0
Altmetric
Invited Review Article

Antenna miniaturization: definitions, concepts, and a review with emphasis on metamaterials

&
Pages 2089-2123 | Received 22 Sep 2014, Accepted 27 Sep 2014, Published online: 06 Nov 2014

References

  • Ziolkowski RW, Kipple AD. Application of double negative materials to increase the power radiated by electrically small antennas. IEEE Trans. Ant. Propag. 2003;51:2626–2640.
  • Ziolkowski RW, Kipple AD. Reciprocity between the effects of resonant scattering and enhanced radiated power by electrically small antennas in the presence of nested metamaterial shells. Phys. Rev. E. 2005;72:036602.
  • Engheta N, Ziolkowski RW. A positive future for double-negative metamaterials. IEEE Trans. Microw. Theory Tech. 2005;53:1535–1556.
  • Ziolkowski RW. Applications of metamaterials to realize efficient electrically small antennas. In: IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials; Singapore; 2005. p. 7–10.
  • Erentok A, Ziolkowski RW. Dipole antennas enclosed in double negative (DNG) and single-negative (SNG) nested spheres: efficient electrically small antennas. In: IEEE AP-S International Symposium and National Radio Science Meeting, Washington, DC; 2005. p. 252–255.
  • Erentok A, Ziolkowski RW. HFSS modeling of a dipole antenna enclosed in an epsilon-negative (ENG) metamaterial shell. In: IEEE AP-S International Symposium and National Radio Science Meeting, Washington, DC; 2005. p. 22–25.
  • Ziolkowski RW, Erentok A. A path to an efficient electrically small antenna: a dipole antenna enclosed in a double negative (DNG) or a single-negative (SNG) metamaterial spherical shell. In: Proceedings Symposium on Antennas and Propagation, ISAP2005; August, Seoul, South Korea; 2005. p. 499–502.
  • Ziolkowski RW, Erentok A. Metamaterial-based efficient electrically small antennas. IEEE Trans. Ant. Propag. 2006;54:2113–2130.
  • Erentok A, Ziolkowski RW. Efficient electrically small antenna design using an electric dipole in a multi-layered ENG metamaterial shell. In: IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials; March 6–8; White Plains, NY; 2006. p. 300–403.
  • Ziolkowski RW, Erentok A. At and beyond the chu limit: passive and active broad bandwidth metamaterial-based efficient electrically small antennas. IET Microw. Ant. Propag. 2007;1:116–128.
  • Erentok A, Ziolkowski RW. A hybrid optimization method to analyze metamaterial-based electrically small antennas. IEEE Trans. Ant. Propag. 2007;55:731–741.
  • Simovski CR, Sochava AA. High-impedance surfaces based on self-resonant grids. Analytical modeling and numerical simulations. Prog. Electromagn. Res. 2003;43:239–256.
  • Xu W, Li LW, Yao HY, Yeo TS, Wu Q. Left-handed material effects on waves modes and resonant frequencies: filled waveguide structures and substrate-loaded patch antennas. J. Electromagn. Waves Appl. 2005;19:2033–2047.
  • Bilotti F, Manzini M, Al A, Vegni L. Polygonal patch antennas with reactive impedance surfaces. J. Electromagn. Waves Appl. 2006;20:169–182.
  • Bilotti F, Alu A, Engheta N, Vegni L. Miniaturized circular patch antenna with metamaterial loading. In: First European Conference on Antennas and Propagation; November; Nice, France; 2006. p. 1–4.
  • Guo R, Xi-Bin W,Yong-Chang J. The design of high gain dipole antenna with metamaterial cover. In: 7th International Symposium on Antennas, Propagation & EM Theory; 2006 October 1–4; Guilin, China; 2006.
  • Alu A, Bilotti F, Engheta N, Vegni L. Theory and simulations of a conformal omni-directional subwavelength metamaterial leaky-wave antenna. IEEE Trans. Ant. Propag. 2007;55:1698–1708.
  • GhadarGhadr S, Mosallaei H. Characterization of metamaterial-based electrically small antennas. In: IEEE AP-S International Symposium; June; Honolulu, HI; 2007. p. 5415–5418.
  • Alu A, Bilotti F, Engheta N, Vegni L. Subwavelength, compact, resonant patch antennas loaded With metamaterials. IEEE Trans. Ant. Propag. 2007;55:13–25.
  • Bilotti F, Alu A, Vegni L. Design of miniaturized metamaterial patch antennas with µ-negative loading. IEEE Trans. Ant. Propag. 2008;56:1640–1647.
  • Hosseini M, Bashir S. A novel circularly polarized antenna based on an artificial ground plane. Prog. Electromagn. Res. Lett. 2008;5:13–22.
  • Kantartzis NV, Sounas DL, Tsiboukis TD. Stencil-optimized time-domain algorithms for compact circular patch antennas with anisotropic metamaterial substrates. IEEE Trans. Mag. 2009;45:1368–1371.
  • Xiong J, Li H, Jin Yi, He S. Modified TM020 mode of a rectangular patch antenna partially loaded with metamaterial for dual-band applications. IEEE Ant. Wireless Propag. Lett. 2009;8:1006–1009.
  • Jin P, Ziolkowski RW. Broadband, efficient, electrically small metamaterial-inspired antennas facilitated by active near-field resonant parasitic elements. IEEE Trans. Ant. Propag. 2010;58:318–327.
  • Chen PY, Alu A. Sub-wavelength elliptical patch antenna loaded with µ-negative metamaterials. IEEE Trans. Ant. Propag. 2010;58:2909–2919.
  • Zhu N, Ziolkowski RW. Active metamaterial-inspired broad-bandwidth, efficient, electrically small antennas. IEEE Ant. Wireless Propag. Lett. 2011;10:1582–1585.
  • Xiong J, Li H, Wang BZ, Jin Y, He S. Theoretical investigation of rectangular patch antenna miniaturization based on the dps-eng bi-layer super-slow tm wave. Prog. Electromagn. Res. 2011;118:379–396.
  • Mahdy MRC, Zuboraj MRA, Ovi AAN, Matin MA. A novel design algorithm’ and practical realization of rectangular patch antenna loaded with SNG metamaterial. Prog. Electromagn. Res. 2011;17:13–27.
  • Zarifi D, Oraizi H, Soleimani M. Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers. Prog. Electromagn. Res. 2012;123:337–354.
  • Kraus JD. Heinrich Hertz – theorist and experimenter. IEEE Trans. Microw. Theory Tech. 1988;36:824–829.
  • Antenna Standards Committee of the IEEE Antennas and Propagation Society. IEEE Standard Definitions of Terms for Antennas, The Institute of Electrical and Electronics Engineers Inc. Approved March 18, 1993. Reaffirmed 23 September 2004.
  • Choo H, Rogers RL, Ling H. Design of electrically small wire antennas using a pareto genetic algorithm. IEEE Trans. Ant. Propag. 2005;53:1038–1046.
  • Wheeler HA. Fundamental limitations of small antennas. Proc. IRE. 1947;35:1479–1484.
  • Chu LJ. Physical limitations of omnidirectional antennas. Technical Report No. 64, MIT Research Laboratory of Electronics. May 1, 1948.
  • Chu LJ. Physical limitations of omnidirectional antennas. J. Appl. Phys. 1948;19:1163–1175.
  • Gustafsson M, Sohl C, Kristensson G. Physical limitations on antennas of arbitrary shape. Proc. R. Soc. A. 2007;463:2589–2607.
  • Davis WA, Yang T, Caswell ED, Stutzman WL. Fundamental limits on antenna size: a new limit. IET Microw. Ant. Propag. 2011;5:1297–1302.
  • Volakis John L, Chi-Chih C, Kyoheim F. Small antennas: miniaturization techniques and applications. New York (NY): McGraw-Hill; 2010.
  • Sievenpiper DF, Dawson DC, Jacob MM, Kanar T, Kim S, Long J, Quarforth RG. Experimental validation of performance limits and design guidelines for small antennas. IEEE Trans. Ant. Propag. 2012;60:8–19.
  • Harrison CW. Monopole with inductive loading. IEEE Trans. Ant. Propag. 1963;11:394–400.
  • Birchfield JL, Free WR. Dielectrically loaded short antennas. IEEE Trans. Ant. Propag. 1974;22:471–472.
  • Smith MS. Properties of dielectrically loaded antennas. Proc. Inst. Elec. Eng. 1977;124:837–839.
  • James JR, Henderson A. Electrically short monopole antennas with dielectric or ferrite coatings. Proc. Inst. Elec. Eng. 1978;125:793–803.
  • Nakano H, Yamauchi J, Kawashima K, Hirose K. Effects of arm bend and asymmetric feeding on dipole antennae. Int. J. Elect. 1983;55:353–364.
  • Nakano H, Hirose K, Yamauchi J. Effects of arm bend on one-wavelength dipole antenna with asymmetric feeding. Int. J. Elect. 1984;56:121–125.
  • Nakano H, Tagami H, Yoshizawa A, Yamauchi J. Shortening ratios of modified aipole antennas. IEEE Trans. Ant. Propag. 1984;32:385–386.
  • Puente C, Romeu J, Ramis J, Hijazo A. Small but long Koch fractal monopole. Elect. Lett. 1998;34:9–10.
  • Gianvittorio JP, Rahmat-Samii Y. Fractal antennas: a novel miniaturization technique, and applications. IEEE Ant. Progat. Mag. 2002;44:20–36.
  • Werner DH, Ganguly S. An overview of fractal antenna engineering research. IEEE Ant. Progat. Mag. 2003;45:38–57.
  • Thal HL. New radiation Q limits for spherical wire antennas. IEEE Trans. Ant. Propag. 2006;54:2757–2763.
  • Gonzalez-Arbesu JM, Blanch S, Romeu J. Are space-filling curves efficient antennas? IEEE Ant. Wireless Propag. Lett. 2003;2:147–150.
  • Rashed J, Tai C-T. A new class of resonant antennas. IEEE Trans. Ant. Propag. 1991;39:1428–1430.
  • Altshuler EE. Very small genetic antennas. In: IEEE AP-S International Symposium and National Radio Science Meeting; July; Salt Lake City, Utah; 2000.
  • Choo H, Rogers R, Ling H. Design of electrically small wire antennas using genetic algorithm taking into consideration of bandwidth and efficiency. In: IEEE AP-S International Symposium and National Radio Science Meeting. Vol. 1; San Antonio, TX; 2002. p. 330–333.
  • Pinhas S, Shtrikman S. Comparison between computed and measured bandwidth of quarter-wave microstrip radiators. IEEE Trans. Ant. Propag. 1988;36:1615–1616.
  • Lee KF, Guo YX, Hawkins JA, Chair R, Luk KM. Theory and experiment on microstrip patch antennas with shorting walls. Proc. Microw. Ant. Propag. 2000;147:521–525.
  • Wong H, Luk K-M, Chan CH, Xue Q, So KK, Lai HW. Small antennas in wireless communications. Proc. IEEE. 2012;100:2109–2121.
  • Carver KR, Mink JW. Microstrip antenna technology. IEEE Trans. Ant. Propag. 1981;29:2–24.
  • Wang BF, Lo YT. Microstrip antennas for dual-frequency operation. IEEE Trans. Ant. Propag. 1984;32:938–943.
  • Maci S, Biffi Gentili B, Piazzesi P, Salvador C. Dual-band slot-loaded patch antenna. IEE Proc.-Microw. Ant. Propag. 1995;142:225–232.
  • Iwasaki H, Lo YT. A circularly-polarized small-size microstrip antenna with a cross slot. IEEE Trans. Ant. Propag. 1996;44:1399–1401.
  • Waterhouse R. Small microstrip patch antenna. Elect. Lett. 1995;31:604–605.
  • Waterhouse RB, Targonski SD, Kokotoff DM. Design and performance of small printed antennas. IEEE Trans. Ant. Propag. 1998;46:1629–1633.
  • Kuga N, Arai H. Circular patch antennas miniaturized by shorting posts. Elect. Commun. Jpn Part 1. 1996;79:631–637.
  • Greetis L, Ouedraogo R, Greetis B, Rothwell EJ. A self-structuring patch antenna: simulation and prototype. IEEE Anten. Propag. Mag. 2010;52:114–123.
  • Kula JS, Psychoudakis D, Liao W-J, Chen C-C, Volakis JL, Halloran JW. Patch-antenna miniaturization using recently available ceramic substrates. IEEE Ant. Progat. Mag. 2006;48:13–20.
  • Lo TK, Ho C-O, Hwang Y, Lam EKW, Lee B. Miniature aperture-coupled microstripantenna of very high permittivity. Elect. Lett. 1997;33:9–10.
  • Lee B, Harackiewicz FJ. Miniature microstrip antenna with a partially filled high-permittivity substrate. IEEE Trans. Ant. Propag. 2002;50:1160–1162.
  • Kapoor J. Miniaturization of microstrip patch antenna obtained by patch meandering and shorting pin loading technique. J. Nat. Phys. Sci. 2011;24:5–9.
  • Lam KY, Luk K-M, Lee KF, Wong H, Ng KB. Small circularly polarized U-slot wideband patch antenna. IEEE Ant. Wireless Propag. Lett. 2011;10:87–90.
  • Bose JC. On the rotation of plane of polarisation of electric waves by a twisted structure. Proc. Roy. Soc. 1898;63:146–152.
  • Rayleigh L. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philos. Mag. Ser. 1892;5–34:481–502.
  • Pendry JB. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000;85:3966.
  • Sievenpiper D. High-impedance electromagnetic surfaces [PhD dissertation]. Los Angeles (CA): Dept. Elect. Eng., Univ. California at Los Angeles; 1999.
  • Sievenpiper D, Zhang L, Jimenez RF, Alexopolous N, Yablonovitch E. High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 1999;47:2059–2074.
  • Yang F-R, Ma KP, Qian Y, Itoh T. A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure. IEEE Trans. Microw. Theory Tech. 1999;47:2092–2098.
  • Zhang Y, Von-Hagen J, Younis M, Fischer C, Wiesbeck W. Planar artificial magnetic conductors and patch antennas. Special Issue Metamater. IEEE Trans. Ant. Propag. 2003;51:2704–2712.
  • Engheta N, Ziolkowski R. Metamaterial: physics and engineering explorations. Hoboken (NJ): Wiley-IEEE Press; 2006.
  • Capolino F. Theory and phenomena of metamaterials. New York (NY): CRC-Press; 2009.
  • Broas RFJ, Sievenpiper DF, Yablonovitch E. A high-impedance ground plane applied to a cellphone handset geometry. IEEE Trans. Microw. Theory Tech. 2001;49:1262–1265.
  • McKinzie WE III, Fahr RR. A low profile polarisation diversity antenna built on an artificial magnetic conductor. In: IEEE AP-S International Symposium and National Radio Science Meeting. Vol. 1, San Antonio, TX; 2002. p. 762–765.
  • Yang F, Rhamat-Samii Y. A low profile single dipole antenna radiating circularly polarized waves. IEEE Trans. Ant. Propag. 2005;53:3083–3086.
  • Sohn JR, Kim KY, Tae HS, Lee JH. Comparative study on various artificial magnetic conductors for low-profile antenna. Prog. Electromagn. Res. 2006;61:27–37.
  • Bao XL, Ruvio G, Amman MJ. Directional dual-band slot antenna with dual-bandgap high-impedance-surface reflector. Prog. Electromagn. Res. C. 2009;9:1–11.
  • Cheng HR, Song QY. Design of a novel EBG structure and its application in fractal microstrip antenna. Prog. Electromagn. Res. C. 2009;11:81–90.
  • Tran CM, Hafdallah-Ouslimani H, Zhou L, Priou AC, Teillet H, Daden JY, Ourir A. High impedance surfaces based antennas for high data rate communications at 40 GHz. Prog. Electromagn. Res. C. 2010;13:217–229.
  • Wu ZH, Zhang WX. On profile thickness of printed compound air-fed array antenna. J. Electromagn. Waves Appl. 2010;24:199–207.
  • Bianconi G, Costa F, Genovesi S, Monorchio A. Optimal design of dipole antennas backed by a finite high-impedance screen. Prog. Electromagn. Res. C. 2011;18:137–151.
  • Tomeo-Reyes I, Rajo-Iglesias E. Comparative study on different HIS as ground planes and its application to low profile wire antennas design. Prog. Electromagn. Res. 2011;115:55–77.
  • Mu X, Jiang W, Gong S-X, Wang F-W. Dual-band low profile directional antenna with high impedance surface reflector. Prog. Electromagn. Res. 2011;25:67–75.
  • Han X, Adnet N, Bruant I, Pablo F, Hafdallah-Ouslimani H, Proslier L, Priou AC. Experimental study of the behavior of an EBG-based patch antenna subjected to mechanical deformations. Prog. Electromagn. Res. B. 2013;48:313–327.
  • Yuan T, Hafdallah-Ouslimani H, Priou AC, Lacotte G, Collignon G. Dual-layer ebg structures for low-profile bent monopole antennas. Prog. Electromagn. Res. B. 2013;47:315–337.
  • Mosallaei H, Sarabandi K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Ant. Propag. 2004;52:2403–2414.
  • Feresidis AP, Goussetis G, Wang S, Vardaxoglou JC. Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Trans. Ant. Propag. 2005;53:209–215.
  • Sarabandi K, Buerkle AM, Mosallaei H. Compact wideband UHF patch antenna on a reactive impedance substrate. IEEE Ant. Wireless Propag. Lett. 2006;5:503–506.
  • Eleftheriades GV, Iyer AK, Kremer PC. Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Trans. Microw. Theory Tech. 2002;50:2702–2712.
  • Iyer AK, Eleftheriades GV. Negative refractive index metamaterials supporting 2-Dwaves. In: Proceedings IEEE International Symposium Microwave Theory and Technology. Vol. 2; Seattle, WA; 2002. p. 1067–1070.
  • Antoniades MA, Eleftheriades GV. Compact linear lead/lag metamaterial phase shifters for broadband applications. IEEE Ant. Wireless Propag. Lett. 2003;2:103–106.
  • Lai A, Caloz C, Itoh T. Composite right/left-handed transmission line metamaterials. IEEE Microw. Theory Tech. 2004;5:34–50.
  • Caloz C, Itoh T. Electromagnetic metamaterial: transmission line theory and microwave applications. Hoboken (NJ): Wiley; 2006.
  • Sanada A, Kimura M, Awai I, Caloz C, Itoh T. A planar zeroth order resonator antenna using a left-handed transmission line. In: Proceedings of EUMC; Amsterdam; 2004. p. 1341–1344.
  • Qureshi F, Antoniades MA, Eleftheriades GV. A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Ant. Wireless Propag. Lett. 2005;4:333–336.
  • Lee CJ, Leong KMKH, Itoh T. Design of resonant small antenna using composite right/left-handed transmission line. In: IEEE AP-S International Symposium and National Radio Science Meeting; July. Vol. 2B; Washington, DC, 2005. p. 218–221.
  • Antoniades MA, Eleftheriades GV. A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Ant. Wireless Propag. Lett. 2008;7:425–428.
  • Eleftheriades GV, Antoniades MA, Qureshi F. Antenna applications of negative-refractive-index transmission-line structures. IET Microw. Ant. Propag. 2007;1:12–22.
  • Rajab KZ, Mittra R, Lanagan MT. Size reduction of microstrip patch antennas with left-handed transmission line loading. IET Microw. Ant. Propag. 2007;1:39–44.
  • Lizuka H, Hall PS. Left-handed dipole antennas and their implementations. IEEE Trans. Ant. Propag. 2007;55:1246–1253.
  • Lee JG, Lee JH. Zeroth order resonance loop antenna. IEEE Trans. Ant. Propag. 2007;55:994–997.
  • Rennings A, Liebig T, Otto S, Caloz C, Wolff I. Highly directive resonator antennas based on composite right/left-handed (CRLH) transmission lines. In: 2nd International ITG Conference on Antennas (MNCA) Digest, Munich, Germany; 2007.
  • Zhu J, Eleftheriades GV. A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Ant. Wireless Propag. Lett. 2009;8:295–298.
  • Kokkinos T, Feresidis AP. Low-profile folded monopoles with embedded planar metamaterial phase-shifting lines. IEEE Trans. Ant. Propag. 2009;57:2997–3008.
  • Baek S, Lim S. Miniaturised zeroth-order antenna on spiral slotted ground plane. Elect. Lett. 2009;45:1012–1024.
  • Rafaei Booket M, Kamyab M, Jafargholi A, Mousavi SM. Analytical modeling of the printed dipole antenna loaded with CRLH structures. Prog. Electromagn. Res. B. 2010;20:167–186.
  • Lee C-J, Huang W, Gummalla A, Achour M. Small antennas based on CRLH structures: concept, design, and applications. IEEE Ant. Propag. Mag. 2011;53:10–25.
  • Lee HM. A compact zeroth-order resonant antenna employing novel composite right/left-handed transmission-line unit-cells structure. IEEE Ant. Wireless Propag. Lett. 2011;10:1377–1380.
  • Jang TT, Lim SS, Itoh TT. Tunable compact asymmetric coplanar waveguide zeroth-order resonant antenna. J. Electromagn. Waves Appl. 2011;25:2379–2388.
  • Ibrahimand AA, Safwat AME. Microstrip-fed monopole antennas loaded with CRLH unit cells. IEEE Trans. Ant. Propag. 2012;60:4027–4036.
  • Gong JQ, Jiang JB, Liang CH. Low-profile folded-monopole antenna with unbalanced composite right/left-handed transmission line. Electron. Lett. 2012;48:813–815.
  • Liu SX, Feng Q. Compact multi-band loop antennas using CPW-based CRLH quarter-wave type resonators. Prog. Electromagn. Res. C. 2012;28:47–60.
  • Park BC, Lee JH. Dual-band omnidirectional circularly polarized antenna using zeroth- and first-order modes. IEEE Ant. Wirel. Propag. Lett. 2012;11:407–410.
  • Zhou C, Wang G, Wang Y, Zong B, Ma J. CPW-fed dual-band linearly and circularly polarized antenna employing novel composite right/left-handed transmission-line. IEEE Ant. Wireless Propag. Lett. 2013;12:1073–1076.
  • Li Y, Feng QY. A compact composite right/left-handed transmission line antenna with extended bandwidth. J. Electromagn. Waves Appl. 2013;27:123–130.
  • Xu H-X, Wang G-M, Qi M-Q, Zhang C-X, Liang J-G, Gong J-Q, Zhou Y-C. Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas. IEEE Trans. Ant. Propag. 2013;61:735–747.
  • Ko S-T, Park B-C, Lee JH. Dual-band circularly polarized patch antenna with first positive and negative modes. IEEE Ant. Wireless Propag. Lett. 2013;12:1165–1168.
  • Mehdipour A, Denidni TA, Sebak A-R. Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern. IEEE Trans. Ant. Propag. 2014;62:555–562.
  • Ortiz N, Falcone F, Sorolla M. Dual band patch antenna based on complementary rectangular split-ring resonators. In: Proceedings Asia-Pacific Microwave Conference (APMC2009); Singapore; 2009. p. 2762–2765.
  • Zhang H, Li Y-Q, Chen X, Fu Y-Q, Yuan N-C. Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator. IEEE Trans. Ant. Propag. 2009;57:3352–3355.
  • Zhang H, Li Y-Q, Chen X, Fu Y-Q, Yuan N-C. Design of circular polarisation microstrip patch antennas with complementary split ring resonator. IET Microw. Ant. Propag. 2009;3:1186–1190.
  • Zhou L, Liu S, Wei Y, Chen Y, Gao N. Dual-band circularly-polarised antenna based on complementary two turns spiral resonator. Elect. Lett. 2010;46:970–971.
  • Dong Y, Itoh T. Miniaturized substrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans. Ant. Propag. 2010;58:3856–3864.
  • Liu T, Cao X-Y, Gao J, Yang Q, Li W-Q. Design of miniaturized broadband and high gain metamaterial patch antenna. Microw. Optical Tech. Lett. 2011;53:2858–2861.
  • Ortiz N, Falcone F, Sorolla M. Radiation efficiency improvement of dual band patch antenna based on a complementary rectangular split ring resonator. In: Proceedings of the 5th European Conference, Antennas and Propagation (EUCAP); 2011. p. 830–834.
  • Malik J, Kartikeyan MV. Metamaterial inspired patch antenna with l-shape slot loaded ground plane for dual band (wimax/WLAN) applications. Prog. Electromag. Res. Lett. 2012;31:35–43.
  • Dong Y, Toyao H, Itoh T. Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Trans. Ant. Propag. 2012;60:772–785.
  • Saurav K, Sarkar D, Srivastava KV. Dual-polarized dual-band patch antenna loaded with modified mushroom unit cell. IEEE Ant. Wireless Propag. Lett. 2014;13:1357–1360.
  • Limaye AU, Venkataraman J. Size reduction in microstrip antennas using left-handed materials realized by complementary split-ring resonators in ground plane. In: IEEE AP-S International Symposium and National Radio Science Meeting; Ottawa, ON; 2007. p. 1869–1872.
  • Lee Y, Tse S, Hao Y, Parini CG. A compact microstrip antenna with improved bandwidth using complementary split-ring resonator (CSRR) loading. In: IEEE International Symposium on Antennas and Propagation and URSI Radio Science Meeting Digest; Ottawa, ON; 2007. p. 5431–5434.
  • Lee Y, Yang H. Characterization of microstrip patch antennas on metamaterial substrates loaded with complementary split-ring resonators. Microw. Opt. Tech. Lett. 2008;50:2131–2135.
  • Zhao X, Lee Y, Choi J. Design of a compact patch antenna using split-ring resonator embedded substrate. Microw. Opt. Technol. Lett. 2011;53:2786–2790.
  • Xie Y-H, Li L, Zhu C, Liang C-H. A novel dual-band patch antenna with complementary split ring resonators embedded in the ground plane. Prog. Electromagn. Res. Lett. 2011;25:117–126.
  • Ha J, Kwon K, Lee Y, Choi J. Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell. IEEE Trans. Ant. Propag. 2012;60:1143–1147.
  • Tang MC, Xiao S, Bai YY, Deng T, Liu C, Shang Y, Wei C, Wang B-Z. Design of hybrid patch/slot antenna operating in induced TM120 mode. IEEE Trans. Ant. Propag. 2012;60:2157–2165.
  • Xie YH, Zhu C, Li L, Liang CH. A novel dual-band metamaterial antenna based on complementary split ring resonators. Microw. Opt. Technol. Lett. 2012;54:1007–1009.
  • Sharawi MS, Khan MU, Numan AB, Aloi DN. A CSRR loaded MIMO antenna system for ISM band operation. IEEE Trans. Ant. Propag. 2013;61:4265–4274.
  • Gupta S, Mumcu G. A small complementary split ring resonator loaded circularly polarized patch antenna. In: Proceedings of 2013 URSI International Symposium, Electromagnetic Theory (EMTS); Hiroshima; 2013. p. 94–96.
  • Mehdipour A, Denidni TA, Sebak A-R. Multi-band miniaturized antenna loaded by ZOR and CSRR metamaterial structures with monopolar radiation pattern. IEEE Trans. Ant. Propag. 2014;62:555–562.
  • Lim JS, Kim CB, Jang JS, Lee HS, Jung YH, Kim JH, Park SB, Lee BH, Lee MS. Design of a subwavelength patch antenna using metamaterials. In: 38th European Microwave Conference, EuMC; Amsterdam; 2008. p. 1246–1249.
  • Ouedraogo RO, Rothwell EJ. Metamaterial-inspired patch antenna miniaturization technique. In: IEEE AP-S International Symposium and National Radio Science Meeting; Toronto, ON; 2010. p. 1–4.
  • Jahani S, Rashed-Mohassel J, Shahabadi M. Miniaturization of circular patch antennas using MNG metamaterials. IEEE Ant. Wireless Propag. Lett. 2010;9:1194–1196.
  • Pruitt J, Strickland D. Experimental exploration of metamaterial substrate design for an electrically small patch-like antenna. In: IEEE AP-S International Symposium and National Radio Science Meeting; Toronto, ON; 2010. p. 1–4.
  • Ouedraogo RO, Rothwell EJ, Diaz AR, Fuchi K, Temme A. Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Trans. Ant. Propag. 2012;60:2175–2182.
  • Tang M-C, Ziolkowski RW. A study of low-profile, broadside radiation, efficient, electrically small antennas based on complementary split ring resonators. IEEE Trans. Ant. Propag. 2013;61:4419–4430.
  • Paul PM, Annmary CP, Treesa NSM, Sacharias SA, Joseph S, Krishna DD. Miniaturization of square patch antenna using complementary split ring resonators. In: Advances in Computing and Communications (ICACC), Third International Conference; Cochin; 2013. p. 122–125.
  • Dai XW, Wang ZY, Li L, Liang C-H. Multi-band rectangular microstrip antenna using a metamaterial-inspired technique. Prog. Electromagn. Res. Lett. 2013;41:87–95.
  • Kamil BA, Mehmet DC, Filiberto B, Alessandro T, Lucio V, Ekmel K. Experimental verification of metamaterial loaded small patch antennas. COMPEL: Int. J. Comput. Math. Elec. Elect. Eng. 2013;32:1834–1844.
  • Tang J, Ouedraogo RO, Rothwell EJ, Diaz AR, Fuchi K. A continuously tunable miniaturized patch antenna. IEEE Ant. Wireless Propag Lett. 2014;13:1080–1083.
  • Erentok A, Ziolkowski RW. An efficient metamaterial-inspired electrically-small antenna. Microw. Opt. Tech. Lett. 2007;49:1287–1290.
  • Erentok A, Ziolkowski RW. Two-dimensional efficient metamaterial-inspired electrically-small antenna. Microw. Opt. Tech. Lett. 2007;49:1669–1673.
  • Erentok A, Ziolkowski RW. Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Ant. Propag. 2008;56:691–707.
  • Kim OS, Breinbjerg O. Miniaturised self-resonant split-ring resonator antenna. Elect. Lett. 2009;45:196–197.
  • Palandoken M, Grede A, Henke H. Broadband microstrip antenna with left-handed metamaterials. IEEE Trans. Ant. Propag. 2009;57:331–338.
  • Chen S-Y, Ouedraogo RO, Temme A, Diaz AR, Rothwell EJ. MNG-metamaterial-based efficient small loop antenna. In: IEEE AP-S International Symposium and National Radio Science Meeting; Charleston, SC; 2009. p. 1–4.
  • Duan Z, Qu S, Hou Y. Electrically small antenna inspired by spired split ring resonator. Prog. Electromagn. Res. Lett. 2009;7:47–57.
  • Ouedraogo RO, Rothwell EJ, Diaz AR, Chen SY, Temme A, Fuchi K. In situ optimization of metamaterial-inspired loop antennas. IEEE Ant. Wireless Propag. Lett. 2010;9:75–78.
  • Booket RM, Jafargholi A, Kamyab M, Eskandari H, Veysi M, Mousavi SM. Compact multi-band printed dipole antenna loaded with single-cell metamaterial. IET Microw. Ant. Propag. 2012;6:17–23.
  • Dakhli S, Mahdjoubi K, Floc’h JM, Rmili H, Zangar H. Efficient, metamaterial-inspired loop-monopole antenna with shaped radiation pattern. In: Loughborough Antenna and Propagation Conference, LAPC; Loughborough; 2012. p. 1–4.
  • Tang MC, Ziolkowski RW. A study of low-profile, broadside radiation, efficient, electrically small antennas based on complementary split ring resonators. IEEE Trans. Ant. Propag. 2013;61:4419–4430.
  • Kim S, Kawahara Y, Georgiadis A, Collado A, Tentzeris MM. Low-cost inkjet-printed fully passive RFID tags using metamaterial-inspired antennas for capacitive sensing applications. In: IEEE MTT-S International Microwave Symposium Digest (IMS); Seattle, WA; 2013. p. 1–4.
  • Myers JC, Chahal P, Rothwell EJ. A multi-layered metamaterial inspired dynamically tunable antenna. In: IEEE AP-S International Symposium and National Radio Science Meeting; Orlando, FL; 2013. p. 934–935.
  • Ramanandraibe E, Latrach M, Abdouni W, Sharaiha A. A half-loop antenna associated with one SRR cell. In: International Conference Electromagnetics in Advanced Applications (ICEAA); Torino; 2013. p. 1442–1445.
  • Dakhli S, Rmili H, Mahdjoubi K, Floch J-M, Choubani F. A family of directive metamaterial-inspired antennas. Prog. Electromagn. Res. C. 2014;49:105–113.
  • Tang J, Ouedraogo RO, Rothwell EJ, Diaz AR, Fuchi K. A continuously tunable miniaturized patch antenna. IEEE Ant. Wireless Propag. Lett. 2014;13:1080–1083.
  • Zhu J, Eleftheriades GV. Dual-band metamaterial-inspired small monopole antenna for WiFi applications. Elect. Lett. 2009;45:1104–1106.
  • Basaran SC, Erdemli YE. A dual band split-ring monopole antenna for WLAN applications. Microw. Opt. Tech. Lett. 2009;51:2685–2688.
  • Jiang Z, Antoniades MA, Eleftheriades GV. A compact tri-band monopole antenna with single-cell metamaterial loading. IEEE Trans. Ant. Propag. 2010;58:1031–1038.
  • Abaga-Abessolo MA, El-Moussaoui A, Aknin N. Dual-band monopole antenna with omega particles for wireless applications. Prog. Electromagn. Res. Lett. 2011;24:27–34.
  • Cheng X, Senior DE, Kim C, Yoon Y-K. A compact omnidirectional self-packaged patch antenna with complementary split ring resonator loading for wireless endoscope applications. IEEE Ant. Wireless Propag. Lett. 2011;10:1532–1535.
  • Basaran SC. A compact dual-wideband antenna based on complementary split-ring resonator. Microw. Opt. Technol. Lett. 2012;54:1917–1919.
  • Bertin G, Bilotti F, Piovano B, Vallauri R, Vegni L. Switched beam antenna employing metamaterial-inspired radiators. IEEE Trans. Ant. Propag. 2012;60:3583–3593.
  • Basaran SC, Olgun U, Sertel K. Multiband monopole antenna with complementary split-ring resonators for WLAN and WiMAX applications. Elect. Lett. 2013;49:636–638.
  • Zhou C, Wang G, Wang Y, Zong B, Ma J. CPW-fed dual-band linearly and circularly polarized antenna employing novel composite right/left-handed transmission-line. IEEE Ant. Wireless Propag. Lett. 2013;12:1073–1076.
  • Si L-M, Zhu W, Sun H-J. A compact, planar, and CPW-fed metamaterial-inspired dual-band antenna. IEEE Ant. Wireless Propag. Lett. 2013;12:305–308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.