141
Views
1
CrossRef citations to date
0
Altmetric
Invited Review Article

Evidence for undamped waves on ohmic materials

&
Pages 1117-1139 | Received 04 Mar 2015, Accepted 22 Apr 2015, Published online: 04 Jun 2015

References

  • Hicks J, Tejeda A, Taleb-Ibrahimi A, Nevius MS, Wang F, Shepperd K, Palmer J, Bertran F, Le Fèvre P, Kunc J, de Heer WA, Berger C, Conrad EH. A wide-bandgap metal–semiconductor–metal nanostructure made entirely from graphene. Nat. Phys. 2012;9:49–54.10.1038/nphys2487
  • Terabe K, Hasegawa T, Nakayama T, Aono M. Quantized conductance atomic switch. Nature. 2005;433:47–50.10.1038/nature03190
  • Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008;453:80–83.10.1038/nature06932
  • Chua LO. Memristor – the missing circuit element. IEEE Trans. Circuit Theory. 1971;18:507–519.10.1109/TCT.1971.1083337
  • Dutt P, Schmidt TL, Mora C, Le Hur K. Strongly correlated dynamics in multichannel quantum RC circuits. Phys. Rev. B. 2013;87:1–14.
  • Buttiker M, Nigg SE. Mesoscopic capacitance oscillations. Nanotechnology. 2007;18:1–5.
  • Inomata K, Koshino K, Lin ZR, Oliver WD, Tsai JS, Nakamura Y, Yamamoto T. Microwave down-conversion with an impedance-matched Λ system in driven circuit QED. Phys. Rev. Lett. 2014;113:063604.10.1103/PhysRevLett.113.063604
  • Waser R, Aono M. Nanoionics-based resistive switching memories. Nat. Mater. 2007;6:833–840.10.1038/nmat2023
  • Zhitenev NB, Sidorenko A, Tennant DM, Cirelli RA. Chemical modification of the electronic conducting states in polymer nanodevices. Nat. Nanotechnol. 2007;2:237–242.10.1038/nnano.2007.75
  • Szot K, Speier W, Bihlmayer G, Waser R. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 2006;5:312–320.10.1038/nmat1614
  • Smits JHA, Meskers SCJ, Janssen RAJ, Marsman AW, de Leeuw DM. Electrically rewritable memory cells from poly(3-hexylthiophene) Schottky diodes. Adv. Mater. 2005;17:1169–1173.10.1002/(ISSN)1521-4095
  • Warburg E. Ueber das Verhalten sogenannter unpolarisirbarer Elektroden gegen Wechselstrom [About the behavior of non-polarizable electrodes against alternating currents]. Ann. Phys. Chem. 1899;303:493–499.10.1002/(ISSN)1521-3889
  • Epelboin I, Keddam M, Takenouti H. Use of impedance measurements for the determination of the instant rate of metal corrosion. J. Appl. Electrochem. 1972;2:71–79.10.1007/BF00615194
  • Stepins D, Asmanis G, Asmanis A. Measuring capacitor parameters using vector network analyzers. Electronics. 2014;18:29–38.
  • Kuhn WB, Boutz AP. Measuring and reporting high quality factors of inductors using vector network analyzers. IEEE Trans. Microw. Theory. 2010;58:1046–1055.
  • Tagro Y, Waldhoff N, Gloria D, Boret S, Dambrine G. In situ silicon-integrated tuner for automated on-wafer MMW noise parameters extraction using multi-impedance method for transistor characterization. IEEE Trans. Semicond. Manufact. 2012;25:170–177.10.1109/TSM.2011.2181673
  • Liu J, Frühauf U, Schönecker A. Accuracy improvement of impedance measurements by using the self-calibration. Measurement. 1999;25:213–225.10.1016/S0263-2241(99)00005-6
  • Liu J, Frühauf U. Self-calibration measuring methods and applications to measurements of electrical quantities. Measurement. 1999;26:129–142.10.1016/S0263-2241(99)00025-1
  • Angrisani L, Ferrigno L. Reducing the uncertainty in real-time impedance measurements. Measurement. 2001;30:307–315.10.1016/S0263-2241(01)00024-0
  • Navarro L, Mayevskiy E, Chairet T. Measurements of characteristic impedance of high frequency cables with Time Domain Reflectometry TDR. ARFTG Microwave Measurement Symposium; 72nd, Portland: IEEE; 2008.
  • Gregory PC. Impedance measurements of a loop antenna in the topside ionosphere. Planet. Space Sci. 1970;18:1357–1365.10.1016/0032-0633(70)90145-5
  • Tsutsui M, Nagano I, Kojima H, Hashimoto K, Matsumoto H, Yagitani S, Okada T. Measurements and analysis of antenna impedance aboard the Geotail spacecraft. Radio Sci. 1997;32:1101–1126.10.1029/97RS00396
  • Zhu H, Ko YCA, Ye TT. Impedance measurement for balanced UHF RFID tag antennas. Radio and Wireless Symposium (RWS). New Orleans (LA): IEEE; 2010.
  • Gebhart M, Baier T, Facchini M. Automated antenna impedance adjustment for near field communication (NFC). 12th International Conference on Telecommunications – ConTEL. Zagreb; 2013.
  • Randus M, Hoffmann K. A novel method for direct impedance measurement in microwave and mm-wave bands. Microwave Measurements Conference, 75th ARFTG. Anaheim (CA): IEEE; 2010.
  • Okada T, Takahashi H, Imai Y, Kitagawa K, Matsubayashi K, Uwatoko Y, Maeda A. Microwave surface-impedance measurements of the electronic state and dissipation of magnetic vortices in superconducting LiFeAs single crystals. Phys. Rev. B. 2012;86:064516.10.1103/PhysRevB.86.064516
  • Kim JD, Kim SH, Kim HJ, Shin SW, Choi JJ. Impedance measurement system for a microwave-induced plasma. J. Korean. Phys. Soc. 2012;60:907–911.10.3938/jkps.60.907
  • Swarup R, Negi PS, Mendiratta RL. Estimation of uncertainty in impedance measurement at narrow and broadband microwave frequencies. Measurement. 2003;33:55–66.10.1016/S0263-2241(02)00041-6
  • Callegaro L. The metrology of electrical impedance at high frequency: a review. Meas. Sci. Technol. 2009;20:022002.10.1088/0957-0233/20/2/022002
  • Ferloni P, Mastragostino M, Meneghello L. Impedance analysis of electronically conducting polymers. Electrochim. Acta. 1996;41:27–33.10.1016/0013-4686(95)00290-U
  • Sardenberg RB, Teixeira CE, Pinheiro M, Figueiredo JMA. Nonlinear conductivity of fullerenol aqueous solutions. ACS Nano. 2011;5:2681–2686.10.1021/nn102913p
  • Nguyen TA Yin T-I, Reyes D, Urban GA. Microfluidic chip with integrated electrical cell-impedance sensing for monitoring single cancer cell migration in three-dimensional matrixes. Anal. Chem. 2013;85:11068–11076.10.1021/ac402761s
  • Atienzar FA, Gerets H, Tilmant K, Toussaint G, Dhalluin S. Evaluation of impedance-based label-free technology as a tool for pharmacology and toxicology investigations. Biosensors. 2013;3:132–156.10.3390/bios3010132
  • Huet F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. J. Power Sources. 1998;70:59–69.10.1016/S0378-7753(97)02665-7
  • Gramse G. Calibrated complex impedance and permittivity measurements with scanning microwave microscopy. Nanotechnology. 2014;25:145703.10.1088/0957-4484/25/14/145703
  • Maurin G, Solorza O, Takenouti H. CdTe electrodeposition. J. Electroanal. Chem. 1986;202:323–328.10.1016/0022-0728(86)90128-2
  • Rouquette-Sanchez S, Cowache P, Boncorps P, Vedel J. Theoretical investigation of the electrochemical deposition of metal involving adsorption and desorption steps. Electrochim. Acta. 1993;38:2043–2050.10.1016/0013-4686(93)80338-Z
  • Salié G. Oscillatory kinetics of electrochemical phase boundary reactions. J. Electroanal. Chem. 1980;116:625–642.10.1016/S0022-0728(80)80293-2
  • Shnyrkov VI, Born D, Soroka AA, Krech W. Coherent Rabi response of a charge-phase qubit under microwave irradiation. Phys. Rev. B. 2009;79:184522.10.1103/PhysRevB.79.184522
  • Bode HW. Network analysis and feedback amplifier design. Bell telephone laboratories series. New York (NY): D. Van Nostrand; 1945.
  • Macdonald DD, Urquidi-Macdonald M. Application of Kramers-Kronig transforms in the analysis of electrochemical systems. J. Electrochem. Soc. 1985;132:2316–2319.10.1149/1.2113570
  • Urquidi-Macdonald M, Real S, Macdonald DD. Application of Kramers-Kronig transforms in the analysis of electrochemical impedance data. J. Electrochem. Soc. 1986;133:2018–2024.10.1149/1.2108332
  • Esteban JM, Orazem ME. On the application of the Kramers-Kronig relations to evaluate the consistency of electrochemical impedance data. J. Electrochem. Soc. 1991;138:67–76.10.1149/1.2085580
  • Boukamp BA. Practical application of the Kramers-Kronig transformation on impedance measurements in solid state electrochemistry. Solid State Ionics. 1993;62:131–141.10.1016/0167-2738(93)90261-Z
  • Toll JS. Causality and the dispersion relation: logical foundations. Phys. Rev. 1956;104:1760–1770.10.1103/PhysRev.104.1760
  • Ramo S, Whinnery JR, Van Duzer T. Fields and waves in communication electronics. 3rd ed. New York (NY): Wiley; 1994.
  • Titchmarsh C. Introduction to the theory of Fourier Integrals. 2nd ed. Oxford: Clarendon Press; 1948. p. 119–128.
  • Bracewell RN. The Fourier transform and its applications. 3rd ed. Boston (MA): McGraw-Hill; 2000. p. 359–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.