590
Views
18
CrossRef citations to date
0
Altmetric
Articles

Theoretical and experimental analysis of subwavelength bowtie-shaped antennas

, , , &
Pages 1686-1698 | Received 13 Oct 2014, Accepted 10 May 2015, Published online: 07 Jul 2015

References

  • Kalkbrenner T, Håkanson U, Schädle A, et al. Optical microscopy via spectral modifications of a nanoantenna. Phys. Rev. Lett. 2005;95:200801-1–200801-4.10.1103/PhysRevLett.95.200801
  • Sánchez EJ, Novotny L, Xie XS. Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys. Rev. Lett. 1999;82:4014–4017.10.1103/PhysRevLett.82.4014
  • Zhang Z, Ahn P, Dong B, et al. Quantitative imaging of rapidly decaying evanescent fields using plasmonic near-field scanning optical microscopy. Sci. Rep. 2013;3:2803-1–2803-8.
  • Betzig E, Trautman JK, Wolfe R, et al. Near-field magneto-optics and high density data storage. Appl. Phys. Lett. 1992;61:142–144.10.1063/1.108198
  • Park S, Hahn JW. Plasmonic data storage medium
with metallic nano-aperture array embedded
in dielectric material. Opt. Exp. 2009;17:20203–20210.10.1364/OE.17.020203
  • Liu Z, Wei Q, Zhang X. Surface plasmon interference nanolithography. Nano Lett. 2005;5:957–961.10.1021/nl0506094
  • Aksu S, Cetin AE, Adato R, et al. Plasmonically enhanced vibrational biospectroscopy using low-cost infrared antenna arrays by nanostencil lithography. Adv. Opt. Mater. 2013;1:798–803.10.1002/adom.201300133
  • Guo X, Du J, Guo Y, et al. Large-area surface-plasmon polariton interference lithography. Opt. Lett. 2006;31:2613–2615.10.1364/OL.31.002613
  • Yanik AA, Huang M, Kamohara O, et al. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010;10:4962–4969.10.1021/nl103025u
  • Yanik AA, Cetin AE, Huang M, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci. USA. 2011;108:11784–11789.10.1073/pnas.1101910108
  • Cetin AE, Altug H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing. ACS Nano. 2012;6:9989–9995.10.1021/nn303643w
  • Coskun AF, Cetin AE, Galarreta BC, et al. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci. Rep. 2014;4:1–7.
  • Cetin AE, Coskun AF, Galarreta BC, et al. Handheld high-throughput plasmonic biosensor using computational on-chip imaging. Light. Sci. Appl. 2014;3:1–10.
  • Adato R, Yanik AA, Amsden JJ, et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. USA. 2009;106:19227–19232.10.1073/pnas.0907459106
  • Cetin AE, Yanik AA, Yilmaz C, et al. Monopole antenna arrays for optical trapping, spectroscopy and sensing. Appl. Phys. Lett. 2011;98:111110-1–111110-3.10.1063/1.3559620
  • Wu CW, Khanikaev AB, Adato R, et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012;11:69–75.
  • Cetin AE, Etezadi D, Altug H. Accessible nearfields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy. Adv. Opt. Mater. 2014;2:866–872.10.1002/adom.201400171
  • Cetin AE, Turkmen M, Aksu S, et al. Multi-resonant compact nanoaperture with accessible large nearfields. Appl. Phys. B. 2015;118:29–38.10.1007/s00340-014-5950-7
  • Turkmen M. Characterization of x-shaped nanoaperture antenna arrays operating in mid-infrared regime. Chin. Opt. Lett. 2013;11:070501-1–070501-4.10.3788/COL
  • Sendur K, Challener W. Near-field radiation of bow-tie antennas and apertures at optical frequencies. J. Microsc. 2002;210:279–283.
  • Adato R, Yanik AA, Wu C-H, et al. Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays. Opt. Exp. 2010;18:4526–4537.10.1364/OE.18.004526
  • Schuck PJ, Fromm DP, Sundaramurthy A, et al. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. Phys. Rev. Lett. 2005;94:017402-1–017402-4.10.1103/PhysRevLett.94.017402
  • Muhlschlegel P, Eisler HJ, Matin OJF, et al. Resonant optical antennas. Science. 2005;308:1607–1609.10.1126/science.1111886
  • Shi X, Hesselink L, Thornton RL. Ultrahigh light transmission through a C-shaped nanoaperture. Opt. Lett. 2003;28:1320–13226.10.1364/OL.28.001320
  • Shi X, Hesselink L. Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage. Jpn. J. Appl. Phys. 2002;41:1632–1635.10.1143/JJAP.41.1632
  • Bethe HA. Theory of diffraction by small holes. Phys. Rev. 1944;66:163–182.10.1103/PhysRev.66.163
  • Chang S-H, Gray S, Schatz G. Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films. Opt. Exp. 2005;13:3150–3165.10.1364/OPEX.13.003150
  • Jin EX, Xu X. Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl. Phys. B. 2006;84:3–9.10.1007/s00340-006-2237-7
  • Darmanyan S, Zayats A. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study. Phys. Rev. B. 2003;67:035424-1–035424-7.10.1103/PhysRevB.67.035424
  • Lezec H, Thio T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Exp. 2004;12:3629–3651.10.1364/OPEX.12.003629
  • Koerkamp JK, Enoch S, Segerink FB, et al. Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 2004;92:183901-1–183901-4.10.1103/PhysRevLett.92.183901
  • Degiron A, Ebbesen TW. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures. J. Opt. A: Pure Appl. Opt. 2005;7:S90–S96.10.1088/1464-4258/7/2/012
  • Itagi AV, Stancil DD, Bain JA, et al. Ridge waveguide as a near-field optical source. Appl. Phys. Lett. 2003;83:4474–4476.10.1063/1.1631057
  • Jin EX, Xu X. Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film. Jpn. J. Appl. Phys. 2004;43:407–417.10.1143/JJAP.43.407
  • Jin EX, Xu X. Enhanced optical near field from a bowtie aperture. Appl. Phys. Lett. 2006;88:153110-1–153110-3.10.1063/1.2194013
  • Oh S, Lee T, Hahn JW. Multifunctional bowtie-shaped ridge aperture for overlay alignment in plasmonic direct writing lithography using a contact probe. Opt. Lett. 2013;38:2250–2252.10.1364/OL.38.002250
  • Cubukcu E, Kort EA, Crozier KB, et al. Plasmonic laser antenna. Appl. Phys. Lett. 2006;89:093120-1–093120-3.10.1063/1.2339286
  • Dalir H, Koyama F. High-speed operation of bow-tie-shaped oxide aperture VCSELs with photon–photon resonance. Appl. Phys. Exp. 2014;7:022102-1–022102-4.10.7567/APEX.7.022102
  • Yanik AA, Huang M, Artar A, et al. Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl. Phys. Lett. 2010;96:021101-1–021101-3.10.1063/1.3290633
  • Aksu S, Yanik AA, Adato R, et al. High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy. Nano. Lett. 2010;10:2511–2518.10.1021/nl101042a
  • Turkmen M, Aksu S, Çetin AE, et al. Multi-resonant metamaterials based on UT-shaped nano-aperture antennas. Opt. Exp. 2011;19:7921–7928.10.1364/OE.19.007921
  • Ditlbacher H, Krenn JR, Felidj N, et al. Fluorescence imaging of surface plasmon fields. Appl. Phys. Lett. 2001;80:404–406.
  • Palik ED. Handbook of optical constants of solids. Orlando, FL: Academic; 1985.
  • Yu N, Cubukcu E, Diehl L, et al. Bowtie plasmonic quantum cascade laser antenna. Opt. Exp. 2007;15:13272–13281.10.1364/OE.15.013272
  • Sederberg S, Elezzabi AY. Sierpiński fractal plasmonic antenna: a fractal abstraction of the plasmonic bowtie antenna. Opt. Exp. 2011;19:10456–10461.10.1364/OE.19.010456
  • Blanchard R, Boriskina SV, Genevet P, et al. Multi-wavelength mid-infrared plasmonic antennas with single nanoscale focal point. Opt. Exp. 2011;19:22113–22124.10.1364/OE.19.022113
  • Berrier A, Ulbricht R, Bonn M, et al. Ultrafast active control of localized surface plasmon resonances in silicon bowtie antennas. Opt. Exp. 2010;18:23226–23235.10.1364/OE.18.023226
  • Lin T-R, Chang S-W, Chuang SL, et al. Coating effect on optical resonance of plasmonic nanobowtie antenna. Appl. Phys. Lett. 2010;97:063106-1–063106-3.
  • Cetin AE. FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures. Int. Nano Lett. 2015;5:21–27.10.1007/s40089-014-0132-5
  • Sundaramurthy A, Crozier KB, Kino GS, et al. Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phy. Rev. B. 2005;72:165409-1–165409-6.10.1103/PhysRevB.72.165409
  • Rechberger W, Hohenau A, Leitner A, et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 2003;220:137–141.10.1016/S0030-4018(03)01357-9
  • Fromm DP, Sundaramurthy A, Schuck PJ, et al. Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible. Nano Lett. 2004;4:957–961.10.1021/nl049951r
  • Novotny L. Effective wavelength scaling for optical antennas. Phys. Rev. Lett. 2007;98:266802-1–266802-4.10.1103/PhysRevLett.98.266802
  • Guo H, Meyrath TP, Zentgraf T, et al. Optical resonances of bowtie slot antennas and their geometry and material dependence. Opt. Exp. 2008;16:7756–7756.10.1364/OE.16.007756

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.