182
Views
3
CrossRef citations to date
0
Altmetric
Articles

Quasi-static analysis of scattering from a chiral-layered sphere in chiral metamaterial

, &
Pages 1644-1671 | Received 29 Jan 2015, Accepted 22 May 2015, Published online: 29 Jun 2015

References

  • Meijs JWH, Peters MJ. The EEG and MEG, using a model of eccentric spheres to describe the head. IEEE Trans. Biomed. Eng. 1987;34:913–920.
  • Cuffin BN. Eccentric spheres models of the head. IEEE Trans. Biomed. Eng. 1991;38:871–878.
  • Mie G. Beitrage zur optik truber medien, speziell kolloidaler metallosungen [Contribution to the optics of turbid media, especially colloidal metal solutions]. Annalen der physik. 1908;330:377–445.
  • Bohren CF. Light scattering by an optically active sphere. Chem. Phys. Lett. 1974;29:458–462.
  • Worasawate D, Mautz JR, Arvas E. Electromagnetic scattering from an arbitrarily shaped three-dimensional homogeneous chiral body. IEEE Trans. Antennas Propag. 2003;51:1077–1084.
  • Demir V, Elsherbeni A, Arvas E. FDTD formulations for scattering from three dimensional chiral objects (20th annual review). Progress in Applied Computational Electromagnetics; Syracuse, NY; 2004.
  • Papernov S, Schmid AW. Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation. J. Appl. Phys. 2002;92:5720–5728.
  • Schurig D, Mock JJ, Justice BJ, et al. Metamaterial electromagnetic cloak at microwave frequencies. Science. 2006;314:977–980.
  • Cummer SA, Popa BI, Schurig D, et al. Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E. 2006;74:036621.
  • Silveirinha MG, Alu A, Engheta N. Parallel-plate metamaterials for cloaking structures. Phys. Rev. E. 2007;75:036603.
  • Lindell IV, Sihvola AH. Transformation method for problems involving perfect electro-magnetic conductor (PEMC) structures. IEEE Trans. Antennas Propag. 2005;53:3005–3011.
  • Sihvola A, Yla-Oijala P, Lindell IV. Scattering by PEMC (perfect electromagnetic conductor) spheres using surface integral equation approach. Appl. Comput. Electromagn. Soc. J. 2007;22:236–249.
  • Christofi A, Stefanou N. Photonic structures of metal-coated chiral spheres. J. Opt. Soc. Am. B. 2012;29:1165–1171.
  • Lakhtakia A. Polarizability dyadics of small bianisotropic spheres. J. de Physique. 1990;51:2235–2242.
  • Lakhtakia A, Varadan VV, Varadan VK. Elastic wave scattering by an isotropic noncentrosymmetric sphere. J. Acoust. Soc. Am. 1992;91:680–684.
  • Lindell IV, Sihvola AH. Quasi-static analysis of scattering from a chiral sphere. J. Electromagn. Waves Appl. 1990;4:1223–1231.
  • Bilal M, Syed AA, Naqvi QA. Quasi-static analysis of scattering from a chiral sphere in chiral medium. J. Electromagn. Waves Appl. 2014;28:2169–2187. doi:10.1080/09205071.2014.958617.
  • Lakhtakia A, Varadan VV, Varadan VK. Plane wave scattering response of a simply moving electrically small, chiral sphere. J. Mod. Opt. 1991;38:1841–1847.
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Vol. 10. New York (NY): Wiley; 1983.
  • Mishchenko MI, Travis LD, Lacis AA. Scattering, absorption, and emission of light by small particles. Cambridge (UK): Cambridge University Press; 2002.
  • Radbruch A. Flow cytometry and cell sorting. 2nd ed. Berlin: Springer; 2000.
  • Shapiro HM. Practical flow cytometry. 3rd ed. New York (NY): Wiley-Liss; 1995.
  • Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006;312:1780–1782.
  • Alu A, Engheta N. Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E. 2005;72:016623.
  • Alu A, Engheta N. Plasmonic and metamaterial cloaking: physical mechanisms and potentials. J. Opt. A: Pure Appl. Opt. 2008;10:093002.
  • Kim JS, Chang JK. Light scattering by two concentric optically active spheres: I. general theory. J. Korean Phys. Soc. 2004;45:352–365.
  • Arslanagic S, Ziolkowski RW. Active coated nanoparticles: impact of plasmonic material choice. Appl. Phys. A. 2011;103:795–798.
  • Ermutlu ME, Sihvola AH. Polarizability matrix of layered chiral sphere. Prog. Electromagn. Res. 1994;9:87–101.
  • Li LW, Dan Y, Kong MS. Electromagnetic scattering by an inhomogeneous chiral sphere of varying permittivity: a discrete analysis using multilayered model. Prog. Electromagn. Res. 1999;23:239–263.
  • Fan X, Zheng W, Singh DJ. Light scattering and surface plasmons on small spherical particles. Light: Sci. Appl. 2014;3:e179.
  • Alu A, Engheta N. Multifrequency optical invisibility cloak with layered plasmonic shells. Phys. Rev. Lett. 2008;100:113901-1–113901-4.
  • Nilsson AMK, Alsholm P, Karlsson A, et al. T-matrix computations of light scattering by red blood cells. Appl. Opt. 1998;37:2735–2748.
  • Liu HZ, Mouthaan K, Zouhdi S, et al. Maximizing scattering by coated spheres with radial anisotropy. Appl. Phys. A. 2012;109:189–196.
  • Bohren CF. Scattering of electromagnetic waves by an optically active cylinder. J. Colloid Interface Sci. 1978;66:105–109.
  • Kluskens MS, Newman EH. Scattering by a multilayer chiral cylinder. IEEE Trans. Antennas Propag. 1991;39:91–96.
  • Graglia RD, Uslenghi PLE, Yu CL. Electromagnetic oblique scattering by a cylinder coated with chiral layers and anisotropic jump-immittance sheets. J. Electromagn. Waves Appl. 1992;6: 695–719.
  • Chen ZN, Hong W, Zhang W. Electromagnetic scattering from a chiral cylinder-general case. IEEE Trans. Antennas Propag. 1996;44:912–917.
  • Lakhtakia A, Varadan VK, Varadan VV. Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects. Appl. Opt. 1985;24:4146–4154.
  • Rojas RG. Integral equations for the scattering by a three dimensional inhomogeneous chiral body. J. Electromagn. Waves Appl. 1992;6:733–750.
  • Bohren CF. Scattering of electromagnetic waves by an optically active spherical shell. J. Chem. Phys. 1975;62:1566–1571.
  • Li LW, Leong MS, Kooi PS, et al. Radiation of an aperture antenna covered by a spherical-shell chiral radome and fed by a circular waveguide. IEEE Trans. Antennas Propag. 1998;46:664–671.
  • Cooray MFR, Ciric IR. Wave scattering by a chiral spheroid. J. Opt. Soc. Am. A. 1993;10: 1197–1203.
  • Tretyakov S, Nefedov I, Sihvola A, et al. Waves and energy in chiral nihility. J. Electromagn. Waves Appl. 2003;17:695–706.
  • Lakhtakia A. On perfect lenses and nihility. Int. J. Infrared Millimeter Waves. 2002;23:339–343.
  • Lakhtakia A. Scattering by a nihility sphere. Microwave Opt. Technol. Lett. 2006;48:895–896.
  • Alu A, Engheta N. Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency. IEEE Trans. Antennas Propag. 2003;51:2558–2571.
  • Alu A, Engheta N. Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers. IEEE Trans. Microwave Theory Tech. 2004;52:199–210.
  • Veselago VG. The electrodynamics of substances with simultaneously nagative values of epsilon and mu. Physics-Uspekhi. 1968;10:509–514.
  • Lindell IV, Sihvola AH, Viitanen AJ, et al. Geometrical optics in inhomogeneous chiral media with application to polarization correction of inhomogeneous microwave lens antennas. J. Electromagn. Waves Appl. 1990;4:533–548.
  • Lindell IV, Sihvola AH, Tretyakov SA, et al. Electromagnetic waves in chiral and bi-isotropic media. London: Artech-House; 1994.
  • Sihvola AH. Electromagnetic mixing formulas and applications. Series 47. London (UK): The Institution of Engineering and Technology; 1999.
  • Harrington RF. Time-harmonic electromagnetic fields. New York (NY): McGraw-Hill; 1961.
  • Olanigan HA, Yakovlev AB, Lovat G, et al. Modal characterization of lossy metamaterial slab waveguides. Antennas and Propagation, 2007. The Second European Conference on EuCAP 2007; Edinburg (TX); 2007; p. 1–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.