388
Views
10
CrossRef citations to date
0
Altmetric
Articles

Three-dimensional tunable frequency selective surface based on vertical graphene micro-ribbons

, &
Pages 2130-2138 | Received 30 Mar 2015, Accepted 20 Jun 2015, Published online: 06 Oct 2015

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896
  • Zhang Y, Tan Y-W, Stormer HL, Kim P. Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature. 2005;438:201–204.10.1038/nature04235
  • Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183–191.10.1038/nmat1849
  • Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.10.1126/science.1157996
  • Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.10.1126/science.1171245
  • Balandin AA, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907.10.1021/nl0731872
  • Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García De Abajo FJ. Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano. 2011;6:431–440.
  • Vakil A, Engheta N. Transformation optics using graphene. Science. 2011;332:1291–1294.10.1126/science.1202691
  • Bao Q, Loh KP. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano. 2012;6:3677–3694.10.1021/nn300989g
  • Moon JS, Gaskill DK. Graphene: its fundamentals to future applications. IEEE Trans. Microwave Theory Tech. 2011;59:2702–2708.10.1109/TMTT.2011.2164617
  • R Camblor, S Ver Hoeye, G Hotopan, et al. Microwave frequency tripler based on a microstrip gap with graphene. J. Electromagn. Waves Appl. 2011;25:1921–1929.
  • Xu YL, Wei XC, Dai GL, Li EP. Analysis of signal transmission along graphene-based interconnect structures. Proceedings International Wireless Symposium (IWS); 2013 Apr 16–18; Beijing, China.
  • SeungNam C, Jung C, Han B, et al. Perspectives on nanotechnology for RF and terahertz electronics. IEEE Trans. Microwave Theory Tech. 2011;59:2709–2718.
  • Yuan J, Liu S, Bian B, Kong X, Zhang H, Wang S. A novel high-selective bandpass frequency selective surface with multiple transmission zeros. J. Electromagn. Waves Appl. 2014;28:2197–2209.10.1080/09205071.2014.959620
  • Zhou K, He Y, Jiang JJ, et al. Design and analysis of a dynamically tunable ultra-broadband flexible microwave absorber. J. Electromagn. Waves Appl. 2014;28:1966–1973.10.1080/09205071.2014.950433
  • Wei XC, Xu YL, Nan M, et al. A non-contact graphene surface scattering rate characterization method at microwave frequency by combining Raman spectroscopy and coaxial connectors measurement. Carbon. 2014;77:53–58.10.1016/j.carbon.2014.04.095
  • Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 2011;6:630–634.10.1038/nnano.2011.146
  • Fallahi A, Perruisseau-Carrier J. Design of tunable biperiodic graphene metasurfaces. Phys. Rev. B. 2012;86:195408.10.1103/PhysRevB.86.195408
  • Andryieuski A, Lavrinenko AV. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Opt. Express. 2013;21:9144–9155.10.1364/OE.21.009144
  • Xu B, Gu C, Li Z, Liu L, Niu Z. A novel absorber with tunable bandwidth based on graphene. IEEE Antennas Wirel. Propag. Lett. 2014;13:822–825.
  • Hanson GW. Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 2008;103:064302–064308.10.1063/1.2891452
  • Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A. Graphene-based plasmonic tunable low-pass filters in the terahertz band. IEEE Trans. Nanotechnol. 2014;13:1145–1153.10.1109/TNANO.2014.2344973
  • Hanson GW. Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans. Antennas Propag. 2008;56:747–757.10.1109/TAP.2008.917005
  • Correas-Serrano D, Gomez-Diaz JS, Perruisseau-Carrier J, Alvarez-Melcon A. Spatially dispersive graphene single and parallel plate waveguides: analysis and circuit model. IEEE Trans. Microwave Theory Tech. 2013;61:4333–4344.10.1109/TMTT.2013.2286971

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.