290
Views
17
CrossRef citations to date
0
Altmetric
Articles

Spoof plasmons in corrugated semiconductors

, , , , &
Pages 1899-1907 | Received 04 May 2015, Accepted 17 Jun 2015, Published online: 25 Jul 2015

References

  • Ritchie RH. Plasma losses by fast electrons in thin films. Phys. Rev. 1957;106:874–881.10.1103/PhysRev.106.874
  • Raether H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin: Springer-Verlag; 1988.
  • Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006;311:189–193.10.1126/science.1114849
  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–830.10.1038/nature01937
  • Nomura W, Ohtsu M, Yatsui T. Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 2005;86:181108.10.1063/1.1920419
  • Quinten M, Leitner A, Krenn JR, Aussenegg FR. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 1998;23:1331–1333.10.1364/OL.23.001331
  • Charbonneau R, Berini P, Berolo E, Lisicka-Shrzek E. Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. Opt. Lett. 2000;25:844–846.10.1364/OL.25.000844
  • Lamprecht B, Krenn JR, Schider G, et al. Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 2001;79:51–53.10.1063/1.1380236
  • Nikolajsen T, Leosson K, Salakhutdinov I, Bozhevolnyi SI. Polymer-based surface-plasmon–polariton stripe waveguides at telecommunication wavelengths. Appl. Phys. Lett. 2003;82:668–670.10.1063/1.1542944
  • Krenn JR, Lamprecht B, Ditlbacher H, et al. Non–diffraction-limited light transport by gold nanowires. Europhys. Lett. 2002;60:663–669.10.1209/epl/i2002-00360-9
  • Krenn JR, Weeber JC. Surface plasmon polaritons in metal stripes and wires. Philos. Trans. R. Soc. A. 2004;362:739–756.
  • Maier SA, Kik PG, Atwater HA, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003;2:229–232.10.1038/nmat852
  • Murray WA, Astilean S, Barnes WL. Transition from localized surface plasmon resonance to extended surface plasmon–polariton as metallic nanoparticles merge to form a periodic hole array. Phys. Rev. B. 2004;69:165407.10.1103/PhysRevB.69.165407
  • Maier SA, Barclay PE, Johnson TJ, Friedman MD, Painter O. Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing. Appl. Phys. Lett. 2004;84:3990.10.1063/1.1753060
  • Maier SA, Friedman MD, Barclay PE, Painter O. Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing. Appl. Phys. Lett. 2005;86:071103.10.1063/1.1862340
  • Berini P, Charbonneau R, Lahoud N, Mattiussi G. Characterization of long-range surface-plasmon–polariton waveguides. J. Appl. Phys. 2005;98:043109.10.1063/1.2008385
  • Pile DFP, Gramotnev DK. Channel plasmon–polariton in a triangular groove on a metal surface. Opt Lett. 2004;29:1069–1071.10.1364/OL.29.001069
  • Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW. Channel plasmon–polariton guiding by subwavelength metal grooves. Phys. Rev. Lett. 2005;95:046802.10.1103/PhysRevLett.95.046802
  • Bozhevolnyi SI, Volkov VS, Devaux E, Laluet J-Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature. 2006;440:508–511.10.1038/nature04594
  • Krasavin AV, Zheludev NI. Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations. Appl. Phys. Lett. 2004;84:1416–1418.10.1063/1.1650904
  • Krasavin AV, Zayats AV, Zheludev NI. Active control of surface plasmon–polariton waves. J. Opt. A: Pure Appl. Opt. 2005;7:S85–S89.10.1088/1464-4258/7/2/011
  • Andrew P, Barnes WL. Energy transfer across a metal film mediated by surface plasmon polaritons. Science. 2004;306:1002–1005.10.1126/science.1102992
  • Pendry JB, Martı́n-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science. 2004;305:847–848.10.1126/science.1098999
  • Lamprecht B, Krenn JR, Schider G, et al. Surface plasmon propagation in microscale metal stripes. Appl. Phys. Lett. 2001;79:51–53.10.1063/1.1380236
  • Babadjanyan AJ, Margaryan NL, Nerkararyan KV. Superfocusing of surface polaritons in the conical structure. J. Appl. Phys. 2000;87:3785–3788.10.1063/1.372414
  • Stockman MI. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 2011;93:137404.
  • Ferguson B, Zhang X-C. Materials for terahertz science and technology. Nat. Mater. 2002;1:26–33.10.1038/nmat708
  • Nagel M, Haring Bolivar P, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R. Integrated THz technology for label-free genetic diagnostics. Appl. Phys. Lett. 2002;80:154–156.10.1063/1.1428619
  • Fernandez-Dominguez AI, Martin-Moreno L, Garcia-Vidal FJ, Andrews SR, Maier SA. Spoof surface plasmon polariton modes propagating along periodically corrugated wires. IEEE J. Sel. Top. Quantum Electron. 2008;14:1515–1521.10.1109/JSTQE.2008.918107
  • Woolf D, Kats MA, Capasso F. Spoof surface plasmon waveguide forces. Opt. Lett. 2014;39:517–520.10.1364/OL.39.000517
  • Hibbins AP, Evans BR, Sambles JR. Experimental verification of designer surface plasmons. Science. 2005;308:670–672.10.1126/science.1109043
  • Garcia-Vidal FJ, Martín-Moreno L, Pendry JB. Surfaces with holes in them: new plasmonic metamaterials. J. Opt. A: Pure Appl. Opt. 2005;7:S97–S101.10.1088/1464-4258/7/2/013
  • García de Abajo FJ, Sáenz JJ. Electromagnetic surface modes in structured perfect-conductor surfaces. Phys. Rev. Lett. 2005;95:233901.10.1103/PhysRevLett.95.233901
  • Ruan Z, Qiu M. Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface. Appl. Phys. Lett. 2007;90:201906.10.1063/1.2740174
  • Chen Y, Song Z, Li Y, et al. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Opt. Express. 2006;14:13021–13029.10.1364/OE.14.013021
  • Rusina A, Durach M, Stockman MI. Theory of spoof plasmons in real metals. Appl. Phys. A. 2010;100:375–378.10.1007/s00339-010-5866-y
  • Born M, Wolf E. Principles of optics. Cambridge: University Press; 1999.10.1017/CBO9781139644181
  • Seidel H, Csepregi L, Heuberger A, Baumgartel H. Anisotropic etching of crystalline silicon in alkaline solutions. J. Electrochem. Soc. 1990;137:3612–3626.10.1149/1.2086277
  • Li S, Jadidi MM, Murphy TE, Kumar G. Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves. Opt. Express. 2013;21:7041–7049.10.1364/OE.21.007041
  • Kumar G, Li S, Jadidi MM, Murphy TE. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars. New J. Phys. 2013;15:085031.10.1088/1367-2630/15/8/085031
  • Rusina A, Durach M, Nelson KA, Stockman MI. Nanoconcentration of terahertz radiation in plasmonic waveguides. Opt. Express. 2008;16:18576–18589.10.1364/OE.16.018576
  • Jung J, Pedersen TG. Analysis of plasmonic properties of heavily doped semiconductors using full band structure calculations. J. Appl. Phys. 2013;113:114904.10.1063/1.4795339
  • Shen L, Chen X, Yang T-J. Terahertz surface plasmon polaritons on periodically corrugated metal surfaces. Opt. Express. 2008;16:3326–3333.10.1364/OE.16.003326
  • Starostenko SN, Rozanov KN. Microwave screen with magnetically controlled attenuation. Prog. Electromagnet. Res. 2009;99:405–426.10.2528/PIER09060403
  • Lou SQ, Guo TY, Fang H, Li HL, Jian SS. A new type of terahertz waveguides. Chin. Phys. Lett. 2006;23:235–238.
  • Maier SA, Andrews SR, Martin-Moreno L, Garcia-Vidal FJ. Terahertz surface plasmon–polariton propagation and focusing on periodically corrugated metal wires. Phys. Rev. Lett. 2006;97:176805-1–176805-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.