444
Views
40
CrossRef citations to date
0
Altmetric
Articles

Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range

, , &
Pages 2408-2419 | Received 21 Jun 2015, Accepted 10 Jul 2015, Published online: 14 Aug 2015

References

  • Hendrickson J, Guo J, Zhang B, Buchwald W, Soref R. Wideband perfect light absorber at midwave infrared using multiplexed metal structures. Opt. Lett. 2012;37:371–373.10.1364/OL.37.000371
  • Kats MA, Blanchard R, Genevet P, Capasso F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mat. 2013;12:20–24.
  • Sobhani A, Knight MW, Wang Y, et al. Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device. Nat. Commun. 2013;4:2642-1–2642-6.
  • Hedayati MK, Faupel F, Elbahri M. Tunable broadband plasmonic perfect absorber at visible frequency. Appl. Phys. A. 2012;109:769–773.10.1007/s00339-012-7344-1
  • Liu N, Mesch M, Weiss T, Hentschel M, Giessen H. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10:2342–2348.10.1021/nl9041033
  • Wang B, Teo KH, Nishino T, Yerazunis W, Barnwell J, Zhang J. Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 2011;98:254101-1–254101-3.
  • Niesler FBP, Gansel JK, Fischbach S, Wegener M. Metamaterial metal-based bolometers. Appl. Phys. Lett. 2012;100:203508–1–203508-3.
  • Aydin K, Ferry VE, Briggs RM, Atwater HA. Broadband polarization-independent resonant light using ultrathin plasmonics super absober. Nat. Commun. 2012;2:1528-1–1528-7.
  • Hall AS, Faryad M, Barber GD, et al. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal. ACS Nano. 2013;7:4995–5007.10.1021/nn4003488
  • Rhee JY, Yoo YJ, Kim KW, Kim YJ, Lee YP. Metamaterial-based perfect absorbers. J. Electromagn. Waves Appl. 2014;28:1541–1580.10.1080/09205071.2014.944273
  • Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys. Rev. Lett. 2008;100:207402-1–207402-4.
  • Yoo YJ, Zheng HY, Kim YJ, et al. Flexible and elastic metamaterial absorber for low frequency, based on small-size unit cell. Appl. Phys. Lett. 2014;105:041902-1–041902-4.
  • Liu X, Starr T, Starr AF, Padilla WJ. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 2010;104:045901-1–045901-4.
  • Cheng YZ, Niela Y, Gong RZ, Yang HL. Multi-band metamaterial absorber using cave-cross resonator. Eur. Phys. J: Appl. Phys. 2011;56:31301-1–31301-6.
  • Tuong PV, Park JW, Rhee JY, et al. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Appl. Phys. Lett. 2013;102:0811220-1–081122-3.
  • Tao H, Kadlec EA, Strikwerda AC, et al. Microwave and terahertz wave sensing with metamaterials. Opt. Express. 2011;19:21620–21626.10.1364/OE.19.021620
  • Dincer F, Karaaslan M, Unal E, Akgol O, Demirel E, Sabah C. Polarization and angle independent perfect metamaterial absorber based on discontinuous cross-wire-strips. J. Electromagn. Waves Appl. 2014;28:741–751.10.1080/09205071.2014.888322
  • Ma B, Liu S, Bian B, et al. Novel three-band microwave metamaterial absorber. J. Electromagn. Waves Appl. 2014;28:1478–1486.
  • Corrigan TD, Park DH, Drew HD, et al. Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers. Appl. Opt. 2012;51:1109–1114.10.1364/AO.51.001109
  • Alves F, Grbovic D, Kearney B, Lavrik NV, Karunasiri G. Bi-material terahertz sensors using metamaterial structures. Opt. Express. 2013;21:13256–13271.10.1364/OE.21.013256
  • Zhu AY, Yi F, Reed JC, Cubukcu E. Cavity-enhanced mid-infrared absorption in perforated grapheme. J. Nanophot. 2014;8:083888-1–083888-9.
  • Xu Z-C, Gao R-M, Ding C-F, et al. A broadband planar THz metamaterial absorber. Mod. Phys. Lett. B. 2015;29:1550056-1–1550056-9.
  • Zang XF, Shi C, Chen L, Cai B, Zhu YM, Zhuang SL. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings. Nat. Sci. Rep. 2015;5:8901-1–8901-5.
  • Ma W, Wen Y, Yu X, Feng Y, Zhao Y. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber. Appl. Phys. Lett. 2015;106:111108-1–111108-5.
  • Ji T, Peng L, Zhu Y, et al. Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers. Appl. Phys. Lett. 2015;106:161107-1–161107-5.
  • Munk BA. Frequency selective surfaces. New York, (NY): Wiley-Interscience; 2000.10.1002/0471723770
  • Jain PK, El-Sayed MA. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 2010;487:153–164.10.1016/j.cplett.2010.01.062
  • Halas NJ, Lal S, Chang W-S, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011;111:3913–3961.10.1021/cr200061k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.