496
Views
5
CrossRef citations to date
0
Altmetric
Articles

Broadband microwave absorption property of a thin metamaterial containing patterned magnetic sheet

, , , , &
Pages 2420-2427 | Received 11 May 2015, Accepted 25 Jul 2015, Published online: 01 Sep 2015

References

  • Ghosh S, Bhattacharyya S, Kaiprath Y, Srivastava KV. Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 2014;115:104503-1–104503-5.10.1063/1.4868577
  • Wang B-X, Wang L-L, Wang G-Z, Huang W-Q, Li X-F, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technol. Lett. 2014;26:111–114.10.1109/LPT.2013.2289299
  • Zhang L, Zhou P, Zhang H, et al. A broadband radar absorber based on perforated magnetic polymer composites embedded with FSS. IEEE Trans. Magn. 2014;50:1–5.
  • Li S, Gao J, Cao X, Li W, Zhang Z, Zhang D. Wideband, thin, and polarization-insensitive perfect absorber based the double octagonal rings metamaterials and lumped resistances. J. Appl. Phys. 2014;116:043710.10.1063/1.4891716
  • Bhattacharyya S, Vaibhav Srivastava K. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J. Appl. Phys. 2014;115:064508.10.1063/1.4865273
  • Rozanov KN. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans. Antennas Propag. 2000;48:1230–1234.10.1109/8.884491
  • Acher O, Dubourg S. Generalization of Snoek’s law to ferromagnetic films and composites. Phys. Rev. B. 2008;77:104440-1–104440-11.10.1103/PhysRevB.77.104440
  • Liu Y, Liu X, Wang X. Double-layer microwave absorber based on CoFe2O4 ferrite and carbonyl iron composites. J. Alloys Compd. 2014;584:249–253.10.1016/j.jallcom.2013.09.049
  • Chen L, Duan Y, Liu L, Guo J, Liu S. Influence of SiO2 fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 2011;32:570–574.
  • Danlée Y, Huynen I, Bailly C. Thin smart multilayer microwave absorber based on hybrid structure of polymer and carbon nanotubes. Appl. Phys. Lett. 2012;100:213105-1–201305-3.10.1063/1.4717993
  • Rhee JY, Yoo YJ, Kim KW, Kim YJ, Lee YP. Metamaterial-based perfect absorbers. J. Electromagn. Waves Appl. 2014;28:1541–1580.
  • Landy N, Sajuyigbe S, Mock J, Smith D, Padilla W. Perfect metamaterial absorber. Phys. Rev. Lett. 2008;100:207402-1–207402-4.10.1103/PhysRevLett.100.207402
  • Li M, Yang H-L, Hou X-W, Tian Y, Hou D-Y. Perfect metamaterial absorber with dual bands. Prog. Electromagnet. Res. 2010;108:37–49.10.2528/PIER10071409
  • Cheng Y, Yang H. Design, simulation, and measurement of metamaterial absorber. J. Appl. Phys. 2010;108:034906.10.1063/1.3311964
  • Alici KB, Bilotti F, Vegni L, Ozbay E. Experimental verification of metamaterial based subwavelength microwave absorbers. J. Appl. Phys. 2010;108:083113.10.1063/1.3493736
  • Tuong P, Lam V, Park J, Choi E, Nikitov S, Lee Y. Perfect-absorber metamaterial based on flower-shaped structure. Photonics Nanostruct. Fundam. Appl. 2013;11:89–94.
  • Wang B-Y, Liu S-B, Bian B-R, et al. A novel ultrathin and broadband microwave metamaterial absorber. J. Appl. Phys. 2014;116:094504.10.1063/1.4894824
  • Chen X, Ma Y, Ong C. Magnetic anisotropy and resonance frequency of patterned soft magnetic strips. J. Appl. Phys. 2008;104:013921.10.1063/1.2953065
  • Park M-J, Kim S-S. Control of complex permeability and permittivity by air cavity in ferrite-rubber composite sheets and their wide-band absorbing characteristics. IEEE Trans. Magn. 1999;35:3181–3183.10.1109/20.801121
  • Amano M, Kotsuka Y. A method of effective use of ferrite for microwave absorber. IEEE Trans. Microwave Theory Tech. 2003;51:238–245.10.1109/TMTT.2002.806912
  • Yong-Jiang Z, Yong-Qiang P, Hai-Feng C. Design and realization of a magnetic-type absorber with a broadened operating frequency band. Chin. Phys. B. 2013;22:015201.
  • Zhang B, Feng Y, Xiong J, Yang Y, Lu H. Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2–18 GHz. IEEE Trans. Magn. 2006;42:1778–1781.10.1109/TMAG.2006.874188
  • Li W, Wu T, Wang W, Zhai P, Guan J. Broadband patterned magnetic microwave absorber. J. Appl. Phys. 2014;116:044110.10.1063/1.4891475
  • Fante RL, Mccormack MT. Reflection properties of the Salisbury screen. IEEE Trans. Antennas Propag. 1988;36:1443–1454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.