501
Views
29
CrossRef citations to date
0
Altmetric
Articles

Biosensor applications of chiral metamaterials for marrowbone temperature sensing

, , , , &
Pages 2393-2403 | Received 14 Jun 2015, Accepted 14 Aug 2015, Published online: 06 Oct 2015

References

  • Ebbesen TW, Lezec HJ, Ghaemi HF, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667–669.10.1038/35570
  • Pendry JB. Electromagnetic materials enter the negative age. Phys. World. 2001;14:47–51.
  • Pendry JB. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000;85:3966–3969.10.1103/PhysRevLett.85.3966
  • Jacob Z, Alekseyev LV, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express. 2006;14:8247–8256.10.1364/OE.14.008247
  • Liu Z, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science. 2007;315:1686–1686.10.1126/science.1137368
  • Sabah C, Dincer F, Karaaslan M, et al. Polarization-insensitive FSS-based perfect metamaterial absorbers for GHz and THz frequencies. Radio Sci. 2014;49:306–314.10.1002/rds.v49.4
  • Dincer F, Karaaslan M, Unal E, et al. Design of polarization- and incident angle-independent perfect metamaterial absorber with interference theory. J. Electron. Mater. 2014;43:3949–3953.10.1007/s11664-014-3316-x
  • Sabah C, Dincer F, Karaaslan M, et al. Perfect metamaterial absorber with polarization and incident angle independencies based on ring and cross-wire resonators for shielding and a sensor application. Opt. Commun. 2014;322:137–142.10.1016/j.optcom.2014.02.036
  • Karaaslan M, Bakir M. Chiral metamaterial based multifunctional sensor applications. Prog. Electromagnet. Res. 2014;149:55–67.10.2528/PIER14070111
  • Ishimaru A, Jaruwatanadilok S, Kuga Y. Generalized surface plasmon resonance sensors using metamaterials and negative index materials. Prog. Electromagnet. Res. 2005;51:139–152.10.2528/PIER04020603
  • Sanders GH, Manz A. Chip-based microsystems for genomic and proteomic analysis. TrAC, Trends Anal. Chem. 2000;19:364–378.10.1016/S0165-9936(00)00011-X
  • Solinas T, Lampel S, Stilgenbauer S, et al. Matrix-based comparative genomic hybridization. Genes Chromosomes Cancer. 1997;20:399–407.
  • Michalet X, Kapanidis AN, Laurence T, et al. The power and prospects of fluorescence microscopies and spectroscopies. Annu. Rev. Biophys. Biomol. Struct. 2003;32:161–182.10.1146/annurev.biophys.32.110601.142525
  • Webb SED, Roberts SK, Needham SR, et al. Single-molecule imaging and fluorescence lifetime imaging microscopy show different structures for high- and low-affinity epidermal growth factor receptors in A431 cells. Biophys. J. 2008;94:803–819.10.1529/biophysj.107.112623
  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305:788–792.10.1126/science.1096796
  • Melik R, Unal E, Perkgoz NK, et al. Metamaterial based telemetric strain sensing in different materials. Opt. Express. 2010;18:5000–5007.10.1364/OE.18.005000
  • O’Hara JF, Singh R, Brener I, et al. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt. Express. 2008;16:1786–1795.10.1364/OE.16.001786
  • Ding Y. Giant optical activity and negative refractive index in the terahertz region using complementary chiral metamaterials. Phys. Scr. 2012;85:065405.10.1088/0031-8949/85/06/065405
  • Cheng YZ, Yan N, Zheng C, et al. Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure. J. Electromagn. Waves Appl. 2013;27:1068–1076.10.1080/09205071.2013.799447
  • Zhu W, Rukhlenko ID, Xiao F. Polarization conversion in U-shaped chiral metamaterial with four-fold symmetry breaking. J. Appl. Phys. 2014;115:143101.10.1063/1.4870862
  • Ekmekci E, Sayan GT. Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate. Appl. Phys. A: Mater. Sci. Process. 2013;110:189–197.
  • Factorova D. Temperature dependence of bıologıcal tissues complex permittivity at microwave frequencies. Adv. Electr. Electron. Eng. 2008;7:354–357.
  • Dincer F, Karaaslan M, Unal E, et al. Chiral metamaterial structures with strong optical activity and their applications. Opt. Eng. 2014;53:107101–107108.10.1117/1.OE.53.10.107101
  • Dincer F, Sabah C, Karaaslan M, et al. Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial. Prog. Electromagnet. Res. 2013;140:227–239.10.2528/PIER13050601
  • Dincer F, Karaaslan M, Unal E, et al. New generation chiral metamaterials based on rectangular srrs with small and constant chirality over a certain frequency band. IEEE Trans. Antennas Propag. 2014;62:5745–5751.
  • Baker-Jarvis J, Vanzura E, Kissick W. Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microwave Theory Tech. 1990;38:1096–1103.10.1109/22.57336
  • Yang J, Huang M, Tang H, et al. Metamaterial Sensors. Int. J. Antennas Propag. 2013;2013:637270.
  • Faktorová D. Microwave nondestructive testing of dielectric materials. Adv. Electr. Electron. Eng. 2006;5:230–233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.