197
Views
1
CrossRef citations to date
0
Altmetric
Articles

X-band low phase noise push–push oscillator utilizing High-Q differential transmission line loaded with multiple split-ring resonator

, &
Pages 124-139 | Received 12 Oct 2014, Accepted 15 Sep 2015, Published online: 05 Nov 2015

References

  • Gravel JF, Wight JS. On the conception and analysis of a 12-GHz push–push phase-locked DRO. In: IEEE Trans. Microwave Theory Tech. 2006;54:153–159.10.1109/TMTT.2005.860508
  • Xia Q, Tang ZX, Zhang B. A Ku-band push–push dielectric resonator oscillator. J. Electromagn. Waves Appl. 2010;24:1859–1866.
  • Dussopt L, Rebeiz GM. A low phase noise silicon 18-GHz push–push VCO. IEEE Microwave Compon. Lett. 2003;13:4–6.10.1109/LMWC.2002.807699
  • Lee HW, Yoon KC, Nam H, et al. A new K-band push–push VCO using a miniaturized hairpin resonator. Microwave Opt. Technol. Lett. 2010;52:699–701.10.1002/mop.v52:3
  • Xiao H, Takayuki T, Masayoshi A. A low phase noise Ku-band push–push oscillator using slot ring resonator. In: IEEE MTT-S International Microwave Symposium Digest; Fort Worth, TX; 2004. p. 1333–1336.
  • Su P, Zhao SW, Tang ZX. Ku-band push–push VCO based on substrate integrated waveguide resonator. Microwave J. 2013;56:166–176.
  • Chen Z, Hong W, Chen JX, et al. Design of a push–push and push-pull oscillator based on SIW/SICL technique. IEEE Microwave Compon. Lett. 2014;24:397–399.10.1109/LMWC.2014.2310476
  • Franz X, Hans G, Gerhard RO. A 38 GHz push–push oscillator based on 25-GHz fT BJT’s. IEEE Microwave Guided-wave Lett. 1999;9:151–153.
  • Choi J, Seo C. Microstrip square open-loop multiple split-ring resonator for low-phase-noise VCO. IEEE Trans. Microwave Theory Tech. 2008;56:3245–3252.10.1109/TMTT.2008.2007363
  • Lee YT, Lim JS, Kim CS, et al. A compact-size microstrip spiral resonator and its application to microwave oscillator. IEEE Microwave Compon. Lett. 2002;12:375–377.
  • Cho SJ, Kim NY. A novel spiral meander spurline resonator and its implementation to a low phase noise oscillator. Microwave Opt. Technol. Lett. 2011;53:2258–2262.10.1002/mop.v53.10
  • Choi J, Seo C. High-Q metamaterial interdigital transmission line based on complementary spiral resonators for low phase noise voltage-controlled oscillator. IET Circuits Devices Syst. 2012;6:168–175.10.1049/iet-cds.2011.0154
  • Yoon KC, Lee H, Lee DK, et al. A low phase noise oscillator using a new high-q resonator with μ-near zero metamaterial. Microwave Opt. Technol. Lett. 2012;54:1577–1582.10.1002/mop.v54.7
  • Shang Y, Yu H, Cai D, et al. Design of high-Q millimeter-wave oscillator by differential transmission line loaded with metamaterial resonator in 65-nm CMOS. IEEE Trans. Microwave Theory Tech. 2013;61:1892–1902.10.1109/TMTT.2013.2253489
  • Fei W, Yu H, Shang Y, et al. A 96 GHz oscillator by high-Q differential transmission line loaded with complementary split-ring resonator in 65-nm CMOS. IEEE Trans. Circuits Syst. Express Briefs. 2013;60:127–131.10.1109/TCSII.2013.2240813
  • Bilotti F, Toscano A, Vegni L. Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples. IEEE Trans. Antennas Propag. 2007;55:2258–2267.10.1109/TAP.2007.901950
  • Jia S. Microstrip filters for RF/microwave application. New York (NY): Wiley; 2001.
  • Yom IB, Shin DH, Ryu KK, et al. Phase-noise reduction of voltage-controlled dielectric resonator oscillator for the X-band. Microwave Opt. Technol. Lett. 2005;47:515–518.10.1002/(ISSN)1098-2760
  • Kuylenstierna D, Lai S, Bao M, et al. Design of low phase-noise oscillators and wideband VCOs in InGaP HBT technology. IEEE Trans. Microwave Theory Tech. 2012;60:3420–3430.10.1109/TMTT.2012.2216893
  • Liu H, Zhu X, Boon C, et al. Design of ultra-low phase noise and high power integrated oscillator in 0.25 μm GaN-on-SiC HEMT technology. IEEE Microwave Compon. Lett. 2014;24:120–122.10.1109/LMWC.7260

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.