178
Views
0
CrossRef citations to date
0
Altmetric
Articles

Free space material characterization of carbon nanotube thin films at sub-terahertz frequencies

, , , , &
Pages 589-598 | Received 22 Jul 2015, Accepted 03 Jan 2016, Published online: 07 Mar 2016

References

  • Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605.10.1038/363603a0
  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58.10.1038/354056a0
  • Dadrasnia E, Lamela H. Terahertz conductivity characterization of nanostructured graphene-like films for optoelectronic applications. J. Nanophotonics. 2015;9:093598.
  • McEuen PL. Single-wall carbon nanotubes. Phys. World. 2000;13:31–36.10.1088/2058-7058/13/6/26
  • Martel R, Schmidt T, Shea HR, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998;73:2447–2449.10.1063/1.122477
  • De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;399:535–539.10.1126/science.1222453
  • Roldo M, Fatouros DG. Biomedical applications of carbon nanotubes. Annu. Rep. Sect. C (Phys. Chem.). 2013;109:10–35.10.1039/c3pc90010j
  • Klarskov MB, Dam HF, Petersen DH, et al. Fast and direct measurements of the electrical properties of graphene using micro four-point probes. Nanotechnology. 2011;22:445702-1–445702-6.10.1088/0957-4484/22/44/445702
  • Li X, Zhu Y, Cai W, et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009;9:4359–4363.10.1021/nl902623y
  • Zhang Y, Tan Y-W, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201–204.10.1038/nature04235
  • Dadrasnia E, Puthukodan S, Lamela H. Terahertz electrical conductivity and optical characterization of composite nonaligned single- and multiwalled carbon nanotubes. J. Nanophotonics. 2014;8:083099.10.1117/1.JNP.8.083099
  • Jeon T-I, Kim K-J, Kang C, et al. Terahertz conductivity of anisotropic single walled carbon nanotube films. Appl. Phys. Lett. 2002;80:3403–3405.10.1063/1.1476713
  • Hao X, Lu W, Carnahan D, Characterization of multi-walled carbon nanotube (MWNT) papers using X-band waveguides. In Proceedings of IEEE/MTT-S international microwave symposium, Honolulu (HI): IEEE; 2007. p. 1181–1184.
  • Katsounaros A, Rajab KZ, Hao Y, et al. Microwave characterization of vertically aligned multiwalled carbon nanotube arrays. Appl. Phys. Lett. 2011;98:203105-1–203105-3.10.1063/1.3592263
  • Dadrasnia E, Garet F, Lee D, et al. Electrical characterization of silver nanowire-graphene hybrid films from terahertz transmission and reflection measurements. Appl. Phys. Lett. 2014;105:011101-1–011101-5.10.1063/1.4889091
  • Dadrasnia E, Lamela H, Kuppam M-B, et al. Determination of the DC electrical conductivity of multi-walled carbon nanotube films and graphene layers from non-contact time-domain terahertz measurements. Adv. Condens. Matter Phys. 2014;2014:6. Article ID 370619. doi:10.1155/2014/370619.
  • Dadrasnia E, Puthukodan S, Thalakkatukalathil VVK, et al. Sub-THz characterisation of monolayer graphene. J. Spectrosc. 2014;2014:6. Article ID 601059. doi:10.1155/2014/601059.
  • Ghodgaonkar DK, Varadan VV, Varadan VK. Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies. IEEE Trans. Instrum. Meas. 1990;39:387–394.10.1109/19.52520
  • Chen LF, Ong CK, Neo CP, et al. Microwave electronics: measurement and material characterization. West Sussex: Wiley; 2004.10.1002/0470020466
  • Awang Z, Zaki FAM, Baba NH, et al. A free-space method for complex permittivity measurement of bulk and thin film di-electrics at microwave frequencies. Prog. Electromagnet. Res. B. 2013;51:307–328.10.2528/PIERB13031509
  • Weir WB. Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE. 1974;62:33–36.10.1109/PROC.1974.9382
  • Nicolson AM, Ross GF. Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 1970;19:377–382.10.1109/TIM.1970.4313932
  • García-Vidal FJ, Pitarke JM, Pendry JB. Effective medium theory of the optical properties of aligned carbon nanotubes. Phys. Rev. Lett. 1997;78:4289–4292.10.1103/PhysRevLett.78.4289
  • Lakhtakia A, Slepyan GY, Maksimenko SA, et al. Effective medium theory of the microwave and the infrared properties of composites with carbon nanotube inclusions. Carbon. 1998;36:1833–1839.10.1016/S0008-6223(98)00155-9
  • Ren L, Zhang Q, Pint CL, et al. Collective antenna effects in the terahertz and infrared response of highly aligned carbon nanotube arrays. Phys. Rev. B. 2013;87:161401-1–161401-5.10.1103/PhysRevB.87.161401
  • Frank B, Leonardo D, Laszlo F, et al. Chapter 9 - Optical response of carbon nanotubes. In: Kazuyoshi TanakaTokio YF, editor. The science and technology of carbon nanotubes. Oxford: Elsevier Science; 1999. p. 89–106. ISBN 9780080426969. doi:10.1016/B978-008042696-9/50009-4.
  • Maeng I, Kang C, Oh SJ, et al. Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes. Appl. Phys. Lett. 2007;90:051914-1–051914-3.10.1063/1.2435338

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.