162
Views
4
CrossRef citations to date
0
Altmetric
Articles

A computational method for modeling arbitrary junctions employing different surface integral equation formulations for three-dimensional scattering and radiation problems

, , &
Pages 689-713 | Received 11 Sep 2015, Accepted 22 Dec 2015, Published online: 16 Mar 2016

References

  • Martínez-Lorenzo JA, Quivira F, Rappaport CM. SAR imaging of suicide bombers wearing concealed explosive threats. Prog. Electromagnet. Res. 2012;125:255–272.
  • Solís DM, Taboada JM, Obelleiro F, et al. Optimization of an optical wireless nanolink using directive nanoantennas. Opt. Express. 2013;21:2369–2377.
  • Carr M, Topsakal E, Volakis JL. A procedure for modeling material junctions in 3-D surface integral equation approaches. IEEE Trans. Antennas Propag. 2004;52:1374–1379.
  • Putnam JM, Medgyesi-Mitschang LN. Combined field integral equation for inhomogeneous two- and three-dimensional bodies: the junction problem. IEEE Trans. Antennas Propag. 1991;39:667–672.
  • Medgyesi-Mitschang LN, Putnam JM, Gedera MB. Generalized method of moments for three-dimensional penetrable scatterers. J. Opt. Soc. Am. A. 1994;11:1383–1398.
  • Rao SM, Wilton DR, Glisson AW. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 1982;30:409–418.
  • Ylä-Oijala P, Taskinen M, Sarvas J. Surface integral equation method for general composite metallic and dielectric structures with junctions. Prog. Electromagnet. Res. 2005;52:81–108.
  • Kolundžija BM. Electromagnetic modeling of composite metallic and dielectric structures. IEEE Trans. Microwave Theory Tech. 1999;47:1021–1032.
  • Taboada JM, Rivero J, Obelleiro F, et al. Method-of-moments formulation for the analysis of plasmonic nano-optical antennas. J. Opt. Soc. Am. A. 2011;28:1341–1348.
  • Solís DM, Taboada JM, Obelleiro F. Surface integral equation method of moments with multiregion basis functions applied to plasmonics. IEEE Trans. Antennas Propag. 2015;63:2141–2152.
  • Chew WC, Jin J-M, Michielssen E, et al. Fast and efficient algorithms in computational electromagnetics. Boston (MA): Artech House; 2001.
  • Deshpande S. A study of software engineering practices for micro teams [dissertation]. Columbus: The Ohio State University; 2011.
  • Geuzaine C, Remacle J-F. Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 2009;79:1309–1331.
  • Gomez-Sousa H, Rubiños-Lopez O, Martinez-Lorenzo JA. Multilevel fast multipole algorithm with multiple octrees for the solution of large-scale plasmonic problems with junctions. 9th European Conference on Antennas and Propagation (EuCAP); 2015 April 12–17, Lisbon, Portugal: European Association on Antennas and Propagation (EurAAP).
  • Gibson WC. The method of moments in electromagnetics. 2nd ed., New York (NY): Chapman & Hall/CRC; 2014.
  • Landesa L, Araújo MG, Taboada JM, et al. Improving condition number and convergence of the surface integral-equation method of moments for penetrable bodies. Opt. Express. 2012;20:17237–17249.
  • El-Shenawee M. Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects. IEEE Trans. Geosci. Remote Sens. 2004;42:67–76.
  • The Appentra team. Parallware: automatic parallelization of sequential codes [computer software]. A Coruña (Spain): Appentra Solutions SL; 2015. Available from: http://www.appentra.com/products/parallware/.
  • Gomez-Sousa H, Arenaz M, Rubiños-Lopez O, et al. Novel source-to-source compiler approach for the automatic parallelization of codes based on the method of moments. 9th European Conference on Antennas and Propagation (EuCAP); 2015 April 12–17, Lisbon, Portugal: European Association on Antennas and Propagation (EurAAP).
  • Arenaz M, Touriño J, Doallo R. XARK: an extensible framework for automatic recognition of computational kernels. ACM Trans. Program. Lang. Syst. 2008;30:1–56.
  • Andión JM, Arenaz M, Rodríguez G, et al. A novel compiler support for automatic parallelization on multicore systems. Parallel Comput. 2013;39:442–460.
  • OpenMP team. OpenMP [application programming interface (API)]. OpenMP Architecture Review Board. 2015. Available from: http://www.openmp.org.
  • Gomez-Sousa H, Rubiños-Lopez O, Martinez-Lorenzo JA. Junction modeling for piecewise non-homogeneous geometries involving arbitrary materials. In: IEEE International Symposium on Antennas and Propagation; 2014 July 6–11, Memphis, TN, USA; 2014; IEEE Antennas and Propagation Society (AP-S). p. 2196–2197.
  • Arias-Acuña M, Jost T. Physical optics analysis of the radiation pattern of an antenna mounted on an aircraft. 9th European Conference on Antennas and Propagation (EuCAP); 2015 April 12–17, Lisbon, Portugal: European Association on Antennas and Propagation (EurAAP).
  • Sarkar TK, Pereira O. Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag. Mag. 1995;37:48–55.
  • Gomez-Sousa H, Arias-Acuña M, Martinez-Lorenzo JA, et al. Fast and accurate simulation of coaxial-fed antennas using full-wave and asymptotic computational methods. IEEE International Symposium on Antennas and Propagation; 2015 July 19–24, Vancouver, BC, Canada: IEEE Antennas and Propagation Society (AP-S).
  • EM Software and Systems. FEKO Suite [computer software], Troy (MI): Altair; 2014.
  • Ylä-Oijala P, Taskinen M, Järvenpää S. Surface integral equation formulations for solving electromagnetic scattering problems with iterative methods. Radio Sci. 2005;40:1–19.
  • Ergül Ö. Accurate and efficient solutions of electromagnetics problems with the multilevel fast multipole algorithm [dissertation]. Ankara (Turkey): Bilkent University; 2009.
  • Poggio AJ, Miller EK. Integral equation solutions of three-dimensional scattering problems (computer techniques for electromagnetics). Oxford: Pergamon Press; 1973.
  • Chang Y, Harrington RF. A surface formulation for characteristic modes of material bodies. IEEE Trans. Antennas Propag. 1977;25:789–795.
  • Wu TK, Tsai LL. Scattering from arbitrarily-shaped lossy dielectric bodies of revolution. Radio Sci. 1977;12:709–718.
  • Ergül Ö, Gürel L. Novel electromagnetic surface integral equations for highly accurate computations of dielectric bodies with arbitrarily low contrasts. J. Comput. Phys. 2008;227:9898–9912.
  • Ylä-Oijala P, Taskinen M. Well-conditioned Müller formulation for electromagnetic scattering by dielectric objects. IEEE Trans. Antennas Propag. 2005;53:3316–3323.
  • Ylä-Oijala P, Taskinen M. Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects. IEEE Trans. Antennas Propag. 2005;53:1168–1173.
  • Ylä-Oijala P. Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects. Prog. Electromagnet. Res. C. 2008;3:19–43.
  • Cui Z, Han Y, Xu Q, et al. Parallel MoM solution of JMCFIE for scattering by 3-D electrically large dielectric objects. Prog. Electromagnet. Res. M. 2010;12:217–228.
  • Araújo MG, Taboada JM, Rivero J, et al. Solution of large-scale plasmonic problems with the multilevel fast multipole algorithm. Opt. Lett. 2012;37:416–418.
  • Ergül Ö, Gürel L. Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm. IEEE Trans. Antennas Propag. 2009;57:176–187.
  • Ergül Ö, Gürel L. Stabilization of integral-equation formulations for the accurate solution of scattering problems involving low-contrast dielectric objects. Trans. Antennas Propag. 2008;56:799–805.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.