166
Views
13
CrossRef citations to date
0
Altmetric
Articles

Graphene nanoribbon antenna modeling based on MoM-GEC method for electromagnetic nanocommunications in the terahertz range

, , &
Pages 1032-1048 | Received 13 Oct 2015, Accepted 14 Mar 2016, Published online: 03 May 2016

References

  • Castro Neto A, Guinea F, Peres N, Novoselov K, Geim A. The electronic properties of graphene. Rev. Mod. Phys. 2009;81:109–162.10.1103/RevModPhys.81.109
  • Tamagnone M, Gomez-Diaz JS, Mosig JR, Perruisseau-Carrier J. Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. J. Appl. Phys. 2012;112:1–4.
  • Zhu Z, Joshi S, Grover S, et al. Graphene geometric diodes for terahertz rectennas. J. Phys. D: Appl. Phys. 2013;46:1–6.
  • Aidi M, Aguili T. Electromagnetic modeling of coupled carbon nanotube dipole antennas based on integral equations system. Prog. Electromagn. Res. M 2014;40:179–183.10.2528/PIERM14111404
  • Omri D, Aidi M, Aguili T. Marching-on in degree method for electromagnetic coupling analysis of carbon nanotubes (CNT) dipoles array. J. Electromagn. Waves Appl. 2015;29:2454–2471.
  • Aidi, M, Aguili T. Electromagnetic modeling of antenna array based on circular carbon nanotubes bundle. In: The 36th Progress in Electromagnetics Research Symposium; Prague: PIERS; 2015. Session 3P0, p. 1827.
  • Baringhaus J, Ruan M, Edler F, Tejeda A, Sicot M, Taleb-Ibrahimi A, et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. 2014;506:349–354.
  • Dragoman M, Muller AA, Dragoman D, Coccetti F, Plana R. Terahertz antenna based on graphene. J. Appl. Phys. 2010;107:104313.10.1063/1.3427536
  • Lovat G, Burghignoli P, Araneo R. Low-frequency dominantmode propagation in spatially-dispersive graphene nano-waveguides. IEEE Trans. Electromagn. Compat. 2013;55:328–333.
  • Naumis GG, Terrones M, Terrones H, Gaggero-Sager LM. Design of grapheneelectronic devices using nanoribbons of different widths. Appl. Phys. Lett. 2009;95:182104.10.1063/1.3257731
  • Geim AK, Novoselov KS. The rise of graphene. Nat. Mater. 2007;6:183–191.10.1038/nmat1849
  • Akyildiz IF, Jornet JM. Electromagnetic wireless nanosensor networks. NanoCommun. Netw. 2010;1:3–19.
  • Sensale-Rodriguez B, Fang T, Yan R, Kelly MM, Jena D, Liu L, et al. Uniqueprospects for graphene-based terahertz modulators. Appl. Phys. Lett. 2011;99:113104.10.1063/1.3636435
  • Llatser I, Kremers Chigrin C, Jornet DN, et al. (2012, March). Characterization of graphene-based nano-antennas in the terahertz band. In: 6th European Conference on Antennas and Propagation (EUCAP). IEEE; 2012. p. 194–198.
  • Jornet, JM, Akyildiz, IF (2010, April). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP). IEEE; 2010. p. 1–5.
  • Burghignoli, P, Araneo, R, Lovat, G, et al. Space-domain method of moments for graphene nanoribbons. In: 8th European Conference on Antennas and Propagation (EuCAP). IEEE; 2014. p. 666–669.
  • Han MY, Özyilmaz Barbaros, Zhang Y, Kim P. Energy band-gap engineering ofgraphene nanoribbons. Phys. Rev. Lett. 2007;98:206805.10.1103/PhysRevLett.98.206805
  • Mikhailov SA, Ziegler K. New electromagnetic mode in graphene. Phys. Rev. Lett. 2007;99:016803.10.1103/PhysRevLett.99.016803
  • Hajji M, Hamdi B, Aguili T. A new formulation of multiscale method based on modal integral operators. J. Electromagn. Waves Appl. 2015;29:1257–1280.
  • Aguili T. Modélisation des composants S. H. F planaires par la méthode des circuits équivalents généralisés [Thesis]. Tunis: National Engineering School of Tunis ENIT; 2000.
  • Baudrand H, Bajon D. Equivalent circuit representation for integral formulations of electromagnetic problems. Int J Numer Model, Electron Netw Devices Fields. 2002;15:23–57.
  • Hamdi B, Aguili T, Raveu N, Baudrand H. Calculation of the mutual coupling parameters and their effects in 1-d planar almost periodic structures. Prog. In Electromagn. Res. B. 2014;59:269–289.10.2528/PIERB14021105
  • Perruisseau-Carrier J, Tamagnone M, Gomez-Diaz JS, Carrasco E. Graphene antennas: can integration and reconfigurability compensate for the loss? In: Microwave Conference (EuMC), 2013 European; 2013. IEEE.
  • Tamagnone M, Perruisseau-Carrier J. Predicting input impedance and efficiency of graphene reconfigurable dipoles using a simple circuit model. IEEE Antennas Wirel. Propag. Lett. 2014;13:313–316.10.1109/LAWP.2014.2305400

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.