48
Views
0
CrossRef citations to date
0
Altmetric
Articles

Asymptotic method based on Maslov’s theory for the focusing of 3D elliptical lens placed in chiral medium

, , , &
Pages 1292-1307 | Received 20 Mar 2016, Accepted 26 May 2016, Published online: 28 Jun 2016

References

  • Lindell IV, Sihvola AH, Tretyakov SA, et al. Electromagnetic waves in chiral and Bi-isotropic media. Boston, MA: Artech House; 1994.
  • Bassiri S, editor. Electromagnetic waves in chiral media. In Recent advances in electromagnetic theory: Springer-Verlag, New York (NY); 1990.
  • Engheta N. Special issue on wave interaction with chiral and complex media. J. Electromagn. Waves Appl. 1992;5:537–793.
  • Lakhtakia A, Varadan VK, Varadan VV, editors. Time harmonic electromagnetic fields in chiral media. Berlin: Springer; 1989.
  • Pendry JB. A chiral route to negative refraction. Science. 2004;306:1353–1355.
  • Tretyakov S, Sihvola A, Jylh L. Backward-wave regime and negative refraction in chiral composites. Photonic Nanostruct. 2005;3:107–115.
  • Jaggard DL, Mickelson AR, Papas CH. On electromagnetic waves in chiral media. Appl. Phys. 1978;18:211–216.
  • Lakhtakia A, Varadan VK, Varadan VV. Field equations, huygenss principle, integral equations, and theorems for radiation and scattering of electro-magnetic waves in isotropic chiral media. J. Opt. Soc. Am. A. 1988;5:175–184.
  • Lakhtakia A. Beltrami fields in chiral media. Singapore: World Scientific; 1994.
  • Ghaffar A. Shahbaz Ahmad H, Naqvi QA. Analysis of electromagnetic field transmitted by a quadratic inhomogeneous slab composed of chiral medium. Int. J. Appl. Electromagn. Mech. 2013;42:613–622.
  • Boriskin AV, Godi G, Sauleau R, et al. Small hemielliptic dielectric lens antenna analysis in 2-D: Boundary integral equations vs. geometrical and physical optics. IEEE Trans. Antennas Propag. 2008;56:485–492.
  • Tsai CM. Evaluation of geometrical modulation transfer function in optical lens system. Math. Prob. Eng. 2015;2015.
  • Zhang Y, Lu SW, Zhang J, et al. FDTD-PWS scheme and its application to analysis of focusing properties of dielectric lens. IEEE Trans. Antennas Propag. 2009;57:1442–1451.
  • Karimkashi S, Kishk AA. Focusing properties of Fresnel zone plate lens antennas in the near-field region. IEEE Trans. Antennas Propag. 2011;59:1481–1487.
  • Neto A, Maci S, Maagt PJL de. Reflections inside an elliptical dielectric lens antenna. IEE Proc. Microwave Antennas Propag. 1998;145:243–247.
  • Maslov VP, Nazaikinski VE. Asymptotic of operator and pseudo-differential equations. New York, NY: Consultants Bureau; 1988.
  • Fu Y, Zhou X. Zhu S Ultra-enhanced lasing effect of plasmonic lens structured with elliptical nanopinholes distributed in variant periods. Plasmonics. 2010;5:111–116.
  • Densmore A, Rahmat-Samii Y. Three-parameter elliptical aperture distributions for difference patterns by particle swarm optimization. Antennas and Propagation Society International Symposium (APSURSI), 2014. Memphis, TA: IEEE; 2014. pp. 47–48.
  • Rahmat-Samii Y. Jacobi-Bessel analysis of reflector antennas with elliptical apertures. IEEE Trans. Antennas Propag. 1987;35:1070–1074.
  • Cory H, Rosenhouse I. Electromagnetic wave reflection and transmission at a chiral-dielectric interface. J. Mod. Opt. 1990;38:1229–1241.
  • Rahim T, Mughal MJ, Naqvi QA, et al. Field around the focal region of a paraboloidal reflector placed in isotropic chiral medium. Progress Electromagn. Res. B. 2009;15:57–76.
  • Rahim T, Xu J. Expressions for the high frequency fields in the focal region of symmetrical hyperboloidal focussing lens placed in chiral medium. Optik. 2016;127:2021–2029.
  • Ghaffar A, Alkanhal MA. Caustic region fields of an elliptical reflector covered by an anisotropic magnetized plasma layer. J. Eur. Opt. Soc. -Rapid. 2015;10:15034.
  • Ghaffar A, Alkanhal MA. Fields in the focal region of an elliptical reflector coated with an unmagnetized plasma layer. Waves Random Complex Media. 2015;25:405–416.
  • Rahim T, Mughal MJ. Spherical reflector in chiral medium supporting positive phase velocity and negative phase velocity simultaneously. J. Electromagn. Waves Appl. 2009;23:1665–1673.
  • Ghaffar A. Focusing by a cylindrical plano convex lens of chiral medium. J. Electromagn. Waves Appl. 2011;25:833–844.
  • Bassiri S, Papas CH, Engheta N. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab. J. Opt. Soc. Am. A. 1988;5:1450–1459.
  • Ashraf R, Ghafar MA, Naqvi QA. Fields in the focal space of symmetrical hyperbolic focusing lens using Maslov’s method. J. Electromagn. Waves Appl. 2008;22:815–828.
  • Hongo K, Ji Y. Field in the focal region of a dielectric spherical lens. J. Opt. Soc. Am. A. 1991;8:1721–1728.
  • Hongo K, Kobayashi H. Radiation characteristics of a planoconvex lens antenna. Radio Sci. 1996;31:1025–1035.
  • Rolland A, Sauleau R, Le Coq L. Shaped dielectric lens antenna for 60-GHz applications. IEEE Trans. Antennas Propag. 2011;59:4041–4048.
  • Shavit Reuven. Dielectric spherical lens antenna for wireless millimeter-wave communications. Microwave Opt. Technol. Lett. 2003;39:28–33.
  • Duan D-W, Rahmat-Samii Y. Diffraction shaping of reflector antennas with elliptical apertures and circular feed. Antennas and propagation society international symposium AP-S. Digest, 1994. 1994. pp. 46–49.
  • Skyttemyr S. An elliptical aperture dual shaped reflector antenna for SNG applications. Antennas and propagation society international symposium, 2000. IEEE; 2000. pp. 558–561
  • Rahim T, Xu J. Fields around the focal region of a dielectric spherical lens embedded in chiral medium. Optik. 2016;127:4355–4364.
  • Dou WB, Sun ZL, Tan XQ. Fields in the focal space of symmetrical hyperbolic focusing lens. Progress Electromagn. Res. 1998;20:213–226.
  • Sherif SS, Török P. Eigenfunction representation of the integrals of the Debye--Wolf diffraction formula. J. Mod. Opt. 2005;52:857–876.
  • Sherif SS, Foreman MR, Török P. Eigenfunction representation of the electric fields in focal region of a high numerical aperture focusing system. Opt. Express. 2008;16:3397–3307.
  • Foreman MR, Sherif SS, Munro PRT, et al. Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region. Opt. Express. 2008;16:3397–3307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.