478
Views
11
CrossRef citations to date
0
Altmetric
Articles

Metamaterial absorbers for 24-GHz automotive radar applications

, &
Pages 577-593 | Received 13 Dec 2016, Accepted 13 Feb 2017, Published online: 10 Mar 2017

References

  • Bahret WF. The beginnings of stealth technology. IEEE Trans Antennas Propag. 1993;29(4):1377–1385.
  • Emerson WH. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans Antennas Propag. 1973;21(4):484–490.10.1109/TAP.1973.1140517
  • Matsumoto K. Wave absorber based on rubber sheet with circular lattice for installing between ETC lanes. Proceedings of the 9th European Conference on Wireless Technology; 2006 Sept 10–12. Manchester (UK): IEEE; 2007. p. 261–264.
  • Wenger J. Automotive mm-wave radar: Status and trends in system design and technology. EE Colloquium on Automotive Radar and Navigation Techniques (Ref. No. 1998/230); 1998 Feb 9. London (UK): IET; 2002. p. 1/1–1/7.
  • Hahn DW, Lee KS. Microwave absorber for 24 GHz short range automotive radar system. Proceedings of 2012 IEEE Vehicle Power and Propulsion Conference; 2012 Oct 9–12. Seoul (South Korea): IEEE; 2013. p. 1023–1026.
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov Phys Usp. 1968;10(4):509–514.10.1070/PU1968v010n04ABEH003699
  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305(5685):788–792.10.1126/science.1096796
  • Fante RL, McCormack MT. Reflection properties of the Salisbury screen. IEEE Trans Antennas Propag. 1988;36(10):1443–1454.10.1109/8.8632
  • Engheta N. Thin absorbing screens using metamaterial surfaces. Proceedings of the IEEE Antennas and Propagation Society International Symposium; 2002 Jun 16–21. San Antonio (TX): IEEE; 2002; Vol. 2. p. 392–395.
  • Watts CM, Liu X, Padilla WJ. Metamaterial electromagnetic wave absorbers. Adv Mater. 2012;24(23):OP98–OP120.
  • Argyropoulos C. Electromagnetic absorbers based on metamaterial and plasmonic devices. Forum Electromagn Res Methods Appl Technol. 2014;2(2):1–14.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100:207401/1–207401/4.
  • Zhai H, Zhan C, Li Z. A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas Wirel Propag Lett. 2015;14:241–244.
  • Lee J, Yoo M, Lim S. A study of ultra-thin single layer frequency selective surface microwave absorbers with three different bandwidths using double resonance. IEEE Trans Antennas Propag. 2015;63(1):221–230.10.1109/TAP.2014.2365826
  • Tuong PV, Park JW, Rhee JY, et al. Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials. Appl Phys Lett. 2013;102(8):081122.10.1063/1.4794173
  • Jiang ZH, Wu Q, Wang X, et al. Flexible wide-angle polarization-insensitive mid-infrared metamaterial absorbers. Proceedings of the IEEE Antennas and Propagation Society International Symposium; 2010 Jul 11–17. Toronto (ON): IEEE; 2002.
  • Ghosh S, Bhattacharyya S, Srivastava KV. Bandwidth enhancement of an ultrathin polarization insensitive metamaterial absorber. Microw Opt Technol Lett. 2014;56(2):350–355.10.1002/mop.v56.2
  • ANSYS High Frequency Structure Simulator (HFSS), Ver. 15. ANSYS Inc.
  • Smith DR, Schultz S, Markoš P, et al. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B. 2002;65(19):195104.10.1103/PhysRevB.65.195104
  • Liu X, Starr T, Starr AF, et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys Rev Lett. 2010;104(20):207403.10.1103/PhysRevLett.104.207403
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71(3):036617.10.1103/PhysRevE.71.036617
  • Kern DJ, Werner DH. A genetic algorithm approach to the design of ultra-thin electromagnetic bandgap absorbers. Microw Opt Technol Lett. 2003;38(1):61–64.10.1002/(ISSN)1098-2760
  • Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications. New York (NY): Wiley; 2005.10.1002/0471754323
  • Lee J, Lim S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electron Lett. 2011;47(1):8–9.10.1049/el.2010.2770
  • Yoo M, Lim S. Polarization-independent and ultrawideband metamaterial absorber using a hexagonal artificial impedance surface and a resistor–capacitor layer. IEEE Trans Antennas Propag. 2014;62(5):2652–2658.
  • Ayop O, Rahim MKA, Murad NA, et al. Polarization insensitive and wide operating angle metamaterial absorber at X-band. Proceedings of the IEEE Asia-Pacific Conference on Applied Electromagnetics; 2014 Dec 8–10. Johor Bahru (Malaysia): IEEE; 2015. p. 245–249.
  • Lee J, Lee B. Design of thin RC absorbers using a silver nanowire resistive screen. J Electromagn Eng Sci. 2016;16(2):106–111.10.5515/JKIEES.2016.16.2.106

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.