232
Views
2
CrossRef citations to date
0
Altmetric
Articles

Feasibility study: highly integrated chipset design for compact synthetic aperture radar payload on micro-satellite

, , , &
Pages 594-603 | Received 29 Aug 2016, Accepted 13 Feb 2017, Published online: 15 Mar 2017

References

  • Xuexing C, Li Z, Zhang M. Potential and status of high-resolution remote sensing information applied in urban planning in China. Join Urban Remote Sensing Event; 2009. p. 1–5.
  • Junyi T, Palubinskas G, Reinartz P, et al. Interpretation of SAR images in urban areas using simulated optical and radar images. Joint Urban Remote Sensing Event (JURSE); 2011. p. 41–44.
  • Wu D, Shen J, Zhang Y, et al. Application of the Marine Oil Spill Surveillance by Satellite Remote Sensing. International Conference on Environmental Science and Information Application Technology; 2009. p. 505–508.
  • Leshkevich GA, Nghiem SV. Radar remote sensing of Great Lakes ice cover. IEEE International Geoscience and Remote Sensing Symposium. Vol. 6; 2002. p. 3132.10.1109/IGARSS.2002.1027108
  • Anqi W, Zhou D, Gong H. Wetland mapping by using multi-band and multitemporal SAR images: a case study of Hong he National Natural Reserve. 18th International Conference on Geoinformatics; 2010. p. 1–5.
  • Ding F, Zhang X. A review of crop identification and area monitoring based on SAR image. First International Conference on Agro-Geoinformatics (Agro-Geoinformatics); 2012. p. 1–4.10.1109/Agro-Geoinformatics.2012.6311662
  • Le Caillec JM. SAR remote sensing analysis of the sea surface by polynomial filtering [applications corner]. IEEE Signal Process Mag. 2007;24:105–107.10.1109/MSP.2007.4286568
  • Nguyen H, Roussel H, Tabbara W. SAR imaging of a forested area based on a coherent 3-D model of wave scattering: application to remote sensing of a hidden target in VHF band. IEEE International Geoscience and Remote Sensing Symposium; 2005. p. 1326–1329.
  • Hallikainen M, Jaaskelainen V, Koskinen J, et al. Application of Ers-1 SAR data to remote sensing of snow in Finland. International Geoscience and Remote Sensing Symposium; 1992. p. 1661–1663.
  • Ludwig M, Buck CB, Coromina F, et al. Status and trends for space-borne phased array radar. IEEE MTT-S International Microwave Symposium Digest; 2005. p. 4.
  • Yang Ru L. Study of the airborne and space-borne microwave imaging radar system. 2nd International Conference on Microwave and Millimeter Wave Technology; 2000. p. P16–P19.10.1109/ICMMT.2000.895598
  • Mancuso Y. Thales components and technologies for T/R modules. IEEE Radar Conference; 2008. p. 1–5.
  • Torres R, Lokas S, Moller HL, et al. The TerraSAR-L mission and system. IEEE International Geoscience and Remote Sensing Symposium Proceedings. Vol. 7; 2004. p. 4519–4522.
  • Ludwig M, Feldle HP, Ott H. A miniaturised X-band T/R-module for SAR-systems based on active phased array techniques. International, Geoscience and Remote Sensing Symposium on Quantitative Remote Sensing for Science and Applications. Vol. 3; 1995. p. 2063–2065.
  • Stangl M, Werninghaus R, Schweizer B, et al. TerraSAR-X technologies and first results. IEE Proc Radar Sonar Navig. 2006;153:86–95.10.1049/ip-rsn:20045119
  • Okada Y, Hamasaki T, Tsuji M, et al. Hardware performance of L-band SAR system onboard ALOS-2. IEEE International Geoscience and Remote Sensing Symposium (IGARSS); 2011. p. 894–897.
  • Wang Y, Goh WL, Wang YZ. A 9% power efficiency 121-to-137 GHz phase controlled push-push frequency quadrupler in 0.13 μm SiGe BiCMOS. IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers; 2012. p. 262–263.
  • Le H, Duong HT, Huynh AT, et al. A CMOS 77-GHz receiver front-end for automotive radar. IEEE Trans Microwave Theory Tech. 2013;61(10):3783–3793.
  • Lee J, Hung MH, Huang SJ, et al. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits. 2010;45(12):2746–2756.10.1109/JSSC.2010.2075250
  • Mitomo T, Ono N, Hoshino H, et al. A 77 GHz 90 nm CMOS transceiver for FMCW radar applications. IEEE J Solid-State Circuits. 2010;45(4):928–937.10.1109/JSSC.2010.2040234
  • Kawano Y, Suzuki T, Sato M, et al. A 77 GHz transceiver in 90 nm CMOS. IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers; 2009. p. 310–311.
  • Wang Y, Lou L, Chen B, et al. Live demonstration: a Ku-band FMCW synthetic aperture radar transceiver for micro-UAVs. IEEE International Symposium on Circuits and Systems (ISCAS); 2016. p. 2378.
  • Pohl N, Klein T, Aufinger K, et al. A Low-power wideband transmitter front-end chip for 80 GHz FMCW radar systems with integrated 23 GHz downconverter VCO. IEEE J Solid-State Circuits. 2012;47(9):1974–1980.10.1109/JSSC.2012.2201272
  • Guan X, Hajimiri A. A 24-GHz CMOS front-end. IEEE J Solid-State Circuits. 2004;39(2):368–373.10.1109/JSSC.2003.821783
  • Zheng YJ, Zhu Y, Ang CW, et al. A 3.54nJ/bit-RX, 0.671nJ/bit-TX burst mode super-regenerative UWB transceiver in 0.18-μm CMOS. IEEE Trans Circuits Syst I. 2014;61(8):2473–2481.10.1109/TCSI.2014.2332244
  • Nair M, Zheng Y, Ang CW, et al. A low SIR impulse-UWB transceiver utilizing chirp FSK in 0.18 μm CMOS. IEEE J Solid-State Circuits. 2010;45(11):2388–2403.
  • Wang S, Tsai K, Huang K, et al. Design of X-band RF CMOS transceiver for FMCW monopulse radar. IEEE Trans Microwave Theory Tech. 2009;57(1):61–70.10.1109/TMTT.2008.2008942
  • Zheng J, Wong KW, Asaru MA, et al. A 0.18-μm CMOS dual-band UWB transceiver. ISSCC Digital Technical Papers; 2007. p. 114–115.
  • Yu J, Zhao F, Cali J, et al. An X-Band radar transceiver MMIC with bandwidth reduction in 0.13 μm SiGe technology. IEEE J Solid-State Circuits. 2014;49(9):1905–1915.10.1109/JSSC.2014.2315650
  • Ng H, Feger R, Stelzer A. A fully-integrated 77-GHz UWB pseudo-random noise radar transceiver with a programmable sequence generator in SiGe technology. IEEE Trans Circuits Syst I. 2014;61(8):2444–2455.10.1109/TCSI.2014.2309774
  • Park J, Ryu H, Ha KW, et al. 76–81-GHz CMOS transmitter with a phase-locked-loop-based multichirp modulator for automotive radar. IEEE Trans Microwave Theory Tech. 2016;63(4):1399–1408.
  • Wu W, Staszewski RB, Long JR. A 56.4-to-63.4 GHz multi-rate all-digital fractional-N PLL for FMCW radar applications in 65 nm CMOS. IEEE J Solid-State Circuits. 2014;49(5):1081–1096.10.1109/JSSC.2014.2301764
  • Wang Y, Tang K, Zhang Y, et al. A Ku-band 260 mW FMCW synthetic aperture radar TRX with 1.48 GHz BW in 65 nm CMOS for micro-UAVs. IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers; Feb. 2016. p. 240–241.
  • Chen-Kuo C, Huang HK, Liu HZ, et al. An X-band high-power and high-PAE PHEMT MMIC power amplifier for pulse and CW operation. IEEE Microwave Wirel Compon Lett. 2008;18:707–709.
  • Andrews J, Cressler JD, Mitchell M. A high-gain, two-stage, X-band SiGe power amplifier. IEEE/MTT-S International Microwave Symposium; 2007. p. 817–820.
  • Chen-Kuo C, Huang HK, Liu HZ, et al. A 9.1–10.7 GHz 10-W, 40-dB gain four-stage PHEMT MMIC power amplifier. IEEE Microwave Wirel Compon Lett. 2007;17:151–153.
  • Piotrowicz S, Ouarch Z, Chartier E, et al. 43 W, 52% PAE X-Band AlGaN/GaN HEMTs MMIC Amplifiers. IEEE/MTT-S International Microwave Symposium Digest (MTT); 2010. p. 23–28.
  • Pirooz C, Abbasi M, Grahn J, et al. Highly linear 1–3 GHz GaN HEMT low-noise amplifier. IEEE MTT-S International Microwave Symposium Digest (MTT); 2012. p. 17–22.
  • Roux P, Baeyens Y, Weiner J, et al. Ultra-low-power X-band SiGe HBT low-noise amplifier. IEEE/MTT-S International Microwave Symposium; 2007. p. 1787–1790.
  • Patel VJ, Axtell HS, Cerny CL, et al. X-band low noise amplifier using SiGe BiCMOS technology. IEEE Compound Semiconductor Integrated Circuit Symposium; 2005. p. 4.
  • Heins MS, Carroll JM, Kao M, et al. X-band GaAs mHEMT LNAs with 0.5 dB noise figure. IEEE MTT-S International Microwave Symposium Digest. Vol. 1; 2004. p. 149–152.
  • Wang Y, Goh WL, Chai KT, et al. Parasitic analysis and π-type Butterworth-Van Dyke model for complementary-metal-oxide-semiconductor Lamb wave resonator with accurate two-port Y-parameter characterizations. Rev Sci Instrum. 2016;87(4):045004.10.1063/1.4945801
  • Mu X, Kropelnicki1 P, Wang Y, et al. Dual mode acoustic wave sensor for precise pressure reading. Appl Phys Lett. 2014;105:113507.10.1063/1.4896025
  • Wang Y, Hong Y, Goh WL, et al. Note: modified π-type Butterworth-Van Dyke model for dual-mode Lamb-wave resonator with precise two-port Y-parameter characterizations. Rev Sci Instrum. 2016;87(10):106101.10.1063/1.4963696
  • Wang Y, Hong Y, Goh WL, et al. A Modified PiBVD model for lamb wave resonator. Microwave Opt Technol Lett. 2017;59(3):703–706.
  • Yeo H, Ryu S, Lee Y, et al. A 940 MHz-bandwidth 28.8 μs-period 8.9 GHz chirp frequency synthesizer PLL in 65 nm CMOS for X band FMCW radar applications. IEEE International Solid-State Circuits Conference (ISSCC) Digital Technical Papers; 2016. p. 238–239.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.