204
Views
4
CrossRef citations to date
0
Altmetric
Articles

Design of confocal waveguide interaction structure for a 220 GHz gyro-TWT

, , , &
Pages 650-662 | Received 30 Nov 2016, Accepted 23 Feb 2017, Published online: 23 Mar 2017

References

  • Liu S. The development of ECRM and gyrotron. Chengdu: Sichuan Publishing House; 1988.
  • Sirigiri JR, Shapiro MA, Temkin RJ. High-power 140-GHz quasi optical gyrotron traveling-wave amplifier. Phys Rev Lett. 2003;90:258302.10.1103/PhysRevLett.90.258302
  • Jiang Y, Lei W, Hu L, et al. Design of a 140 GHz confocal gyro-TWT amplifier. Beijing: IEEE International Vacuum Electronics Conference; 2015. p. 1–2.
  • Yang Y, Yu S, Liu Y, et al. Efficiency enhancement of a 170 GHz confocal gyrotron traveling wave tube. J Fusion Energy. 2015;34:721–726.10.1007/s10894-015-9863-1
  • Guan X, Chen C, Fu W, et al. Design of a 220-GHz continuous frequency-tunable gyrotron with quasi-optical cavity. Beijing: IEEE International Vacuum Electronics Conference; 2015. p. 1–2.
  • Zhou J, Liu D, Liao C, et al. CHIPIC: an efficient code for electromagnetic pic modeling and simulation. IEEE Trans. Plasma Sci. 2009;37:2002–2011.
  • Liu D, Zhou J, Liu S. Using finite-difference time-do main method to realize computer simulation of strut. Acta Phys Sin. 2007;56:6924–6930.
  • Wang H, Liu D, Meng L, et al. The numerical study of full three-dimensional particle in cell/Monte Carlo with gas ionization. Acta Phys Sin. 2013;62:015207.
  • Wang H, Meng L, Liu D, et al. Rescaling of microwave breakdown theory for monatomic gases by particle-in-cell/Monte Carlo simulations. Phys Plasmas. 2013;20:122102.10.1063/1.4838236
  • Sheng Y, Hong L. A nonlinear simulation on beam-wave interaction for high-harmonic complex cavity gyrotron with gradual transition. Acta Phys Sin. 2000;49(12):2455–2459.
  • Hu W, Michael A. 140-GHz gyrotron experiments based on a confocal cavity. IEEE Trans Plasma Sci. 1998;26:366–374.10.1109/27.700767
  • Wang P. Terahertz quasi three dimensional numerical simulation of light swirl device. Chengdu: University of Electronic Science and Technology of China; 2014. p. 16–25.
  • Joye CD. A wideband 140 GHz–1 kW confocal gyro-traveling wave amplifier. Pasadena: International Conference on IRMMW-THz; 2008. p. 1–2.
  • Nusinovich GS. Theory of gyro-backward wave oscillators with tapered magnetic field and waveguide cross section. IEEE Trans Plasma Sci. 1996;24(3):620–629.10.1109/27.532945
  • Sirigri J. A novel quasioptical gyrotron traveling wave amplifier. Boston, MA: Massachusetts Institute of Technology; 2003.
  • Hu P. 0.14THz confocal waveguide gyro-TWT researches. Physics. 2013;72–84.
  • Zong X, Xue Q, Du H. Linear analysis and stability study of distribution losses cyclotron TWT. J Micro. 2009;25(5):56–62.
  • Chu K, Lin A. Gain and bandwidth of the gyro-TWT and CARM amplifiers. IEEE Trans Plasma Sci. 1988;16(2):90–104.10.1109/27.3798
  • Lai G, Liu P. W-band gyro-TWT amplifier simulated researches and design. Acta Phys Sin. 2006;55:321–325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.