376
Views
9
CrossRef citations to date
0
Altmetric
Articles

Electromagnetic optimization of corrugated metallic sheets for maximum power focusing

, &
Pages 837-849 | Received 07 Nov 2016, Accepted 03 Apr 2017, Published online: 25 Apr 2017

References

  • Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks; 1995. p. 1942–1948.
  • Goldberg D. Genetic algorithms in search, optimization, and machine learning. Reading (MA): Addison-Wesley; 1989.
  • Rahmat-Samii Y, Michielssen E. Electromagnetic optimization by genetic algorithms. New York (NY): Wiley; 1999.
  • Jin N, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations. IEEE Trans Antennas Propag. 2007;55:556–567.
  • Araque Quijano JL. Vecchi G. Optimization of a compact frequency- and environment-reconfigurable antenna. IEEE Trans Antennas Propag. 2012;60:2682–2689.
  • Drupp RP, Bossard JA, Werner DH, et al. Single-layer multi-band infrared metallodielectric photonic crystals designed by genetic algorithm optimization. Appl Phys Lett. 2005;86:081102-1–081102-3.
  • Gagnon D, Dumont J, Dube LJ. Beam shaping using genetically optimized two-dimensional photonic crystals. J Opt Soc Am A. 2012;29:2673–2677.
  • Otomori M, Yamada T, Izui K, et al. A topology optimization method based on the level set method for the design of negative permeability dielectric metamaterials. Comput Methods Appl Mech Eng. 2012;237–240:192–211.
  • Werner DH, Bossard JA, Bayraktar Z, et al. Nature inspired optimization techniques for metamaterial design. In: Diest K, editor. Numerical methods for metamaterial design. Springer: Dordrecht; 2013. p. 97–146.
  • Chakravarty S, Mittra R, Williams NR. Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics. IEEE Trans Antennas Propag. 2002;50:284–296.
  • Kern DJ, Werner DH, Wilhelm MJ, et al. Genetically engineered multiband high-impedance frequency selective surfaces. Microw Opt Technol Lett. 2003;38:400–403.
  • Albrecht S, Saliba M, Correa-Baena JP, et al. Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells. J Opt. 2016;18:064012-1–064012-10.
  • Hassan E, Wadbro E, Berggren M. Topology optimization of metallic antennas. IEEE Trans Antennas Propag. 2014;62:2488–2500.
  • Zhou S, Li W, Li Q. Level-set based topology optimization for electromagnetic dipole antenna design. J Comput Phys. 2010;229:6915–6930.
  • Dadash MS, Nikolova NK, Bandler JW. Analytical adjoint sensitivity formula for the scattering parameters of metallic structures. IEEE Trans Microw Theory Tech. 2012;60:2713–2722.
  • Kataja J, Järvenpää S, Toivanen JI, et al. Shape sensitivity analysis and gradient-based optimization of large structures using MLFMA. IEEE Trans Antennas Propag. 2014;62:5610–5618.
  • Venter G, Sobieszczanski-Sobieski J. Particle swarm optimization. AIAA J. 2002;1583–1589.
  • Yuan X, Li Z, Rodrigo D, et al. A parasitic layer-based reconfigurable antenna design by multi-objective optimization. IEEE Trans Antennas Propag. 2012;60:2690–2701.
  • Yan K-K, Lu Y. Sidelobe reduction in array-pattern synthesis using genetic algorithm. IEEE Trans Antennas Propag. 1997;45:1117–1122.
  • Ozgun O, Mutlu S, Aksun MI, et al. Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm. IEEE Trans Antennas Propag. 2003;51:1947–1954.
  • Jiang L, Li H, Jia W, et al. Genetic optimization of photonic crystal waveguide termination for both on-axis and off-axis highly efficient directional emission. Opt Exp. 2009;17:10126–10135.
  • Song S, Murch RD. An efficient approach for optimizing frequency reconfigurable pixel antennas using genetic algorithms. IEEE Trans Antennas Propag. 2014;62:609–620.
  • Rajagopalan H, Kovitz JM, Rahmat-Samii Y. MEMS reconfigurable optimized E-shaped patch antenna design for cognitive radio. IEEE Trans Antennas Propag. 2014;62:1056–1064.
  • Rao SM, Wilton DR, Glisson AW. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans Antennas Propag. 1982;30:409–418.
  • Song J, Lu C-C, Chew WC. Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects. IEEE Trans Antennas Propag. 1997;45:1488–1493.
  • Chew WC, Jin J-M, Michielssen E, et al. Fast and efficient algorithms in computational electromagnetics. Norwood (MA): Artech House; 2001.
  • Ergül Ö, Gürel L. The multilevel fast multipole algorithm (MLFMA) for solving large-scale computational electromagnetics problems. Chichester: Wiley-IEEE; 2014.
  • Ergül Ö, Gürel L. Rigorous solutions of electromagnetics problems involving hundreds of millions of unknowns. IEEE Antennas Propag Mag. 2011;53:18–27.
  • Michiels B, Fostier J, Bogaert I, et al. Full-wave simulations of electromagnetic scattering problems with billions of unknowns. IEEE Trans Antennas Propag. 2015;63:796–799.
  • Önol C, Karaosmanoğlu B, Ergül Ö. Efficient and accurate electromagnetic optimizations based on approximate forms of the multilevel fast multipole algorithm. IEEE Antennas Wireless Propag Lett. 2016;15:1113–1115.
  • Fang C, Liu Q, Ding F, et al. The near-field measurement and near-far field transformation of microwave scattering of a plate at different distances. In: 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China; 2014 Jul 26--29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.