151
Views
4
CrossRef citations to date
0
Altmetric
Special Issue Article: Microwave Tubes and Applications

A gyrating electron beam source for frequency tunable, 200 GHz gyrotron

, , &
Pages 1947-1958 | Received 24 Mar 2017, Accepted 18 Jun 2017, Published online: 07 Jul 2017

References

  • Kumar N, Singh U, Singh TP, et al. a review on the applications of high power, high frequency microwave source: gyrotron. J Fusion Energy. 2011;30:257–276.10.1007/s10894-010-9373-0
  • Kumar N, Singh U, Bera A, et al. A review on the sub-THz/THz gyrotrons. Infrared Phys Technol. 2016;76:38–51.10.1016/j.infrared.2016.01.015
  • Felch KL, Danly BG, Jory HR, et al. Characteristics and applications of fast-wave gyrodevices. Proc IEEE. 1999;87:752–781.10.1109/5.757254
  • Thumm M. State-of-the-art of high power gyro-devices and free electron masers. KIT: Karlsruhe; 2015. ( KIT Scientific Reports 7717.
  • Gold SH, Nusinovich GS. Review of high-power microwave source research. Rev Sci Instrum. 1997;68:3945–3974.10.1063/1.1148382
  • Nanni EA, Barnes AB, Griffin RG, et al. THz dynamic nuclear polarization NMR. IEEE Trans Terahertz Sci Technol. 2011;1:145–163.10.1109/TTHZ.2011.2159546
  • Griffin RG, Prisner TF. High field dynamic nuclear polarization – the renaissance. Phys Chem Chem Phys. 2010;12:5737–5740.10.1039/c0cp90019b
  • Bajaj VS, Hornstein MK, Kreischer KE, et al. 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J Mag Reson. 2007;189:251–279.10.1016/j.jmr.2007.09.013
  • Glyavin MY, Luchinin AG, Golubiatnikov GY. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field. Phys Rev Lett. 2008;100:015101.
  • Kumar N, Singh U, Sinha AK. Design of 132 GHz gyrotron with 3 GHz tunability for 200 MHz DNP/NMR spectrometer. Infrared Phys Technol. 2015;68:44–51.10.1016/j.infrared.2014.11.001
  • Idehara T, Ogawa I, Mitsudo S, et al. Development of frequency tunable, medium power gyrotrons (gyrotron FU series) as submillimeter wave radiation sources. IEEE Trans Plasma Sci. 1999;27:340–354.10.1109/27.772260
  • Hornstein MK, Bajaj VS, Griffin RG, et al. Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator. IEEE Tr. Plasma Sci. 2006;34:524–533.10.1109/TPS.2006.875769
  • Singh U, Kumar N, Sinha AK. Gyrotron and its electron beam source: a review. J Fusion Energy. 2012;31:489–505.10.1007/s10894-011-9495-z
  • Tatematsu Y, Yamaguchi Y, Idehara T, et al. Development of a kW level 200GHz Gyrotron FU CW GI with an internal quasioptical mode convertor. J Infrared Milli Terahertz Waves. 2012;33:292–305.10.1007/s10762-012-9881-2
  • Ikeda R, Tatematsu Y, Idehara T, et al. Development of a table-top 200 GHz gyrotron FU CW CII with an internal mode convertor. Proceedings of 37th Int. Conf. Infrared, Millimeter, THz Waves; 2012 Sep 23–28.
  • Baird JM, Lawson W. Magnetron injection gun (MIG) design for gyrotron applications. Int J Electron. 1986;61:953–967.10.1080/00207218608920932
  • Lawson W. Magnetron injection gun scaling. IEEE Trans Plasma Sci. 1988;16:290–295.10.1109/27.3827
  • Singh U, Bera A, Rao RR, et al. Synthesized parameters of MIG for 200 kW, 42 GHz gyrotron. J Infrared Milli Terahertz Waves. 2009;31:533–541.
  • Kumar N, Singh U, Singh TP, et al. Suppression criteria of parasitic mode oscillations in a gyrotron beam tunnel. Phys Plasmas. 2011;18:022507.10.1063/1.3554648
  • Pu R, Nusinovich GS, Sinitsyn OV, et al. Effect of the thickness of electron beams on the gyrotron efficiency. Phys Plasmas. 2010;17:083105.10.1063/1.3467036
  • EGUN, (Hermannsfeldt, W. B., Stanford Linear Accelerator Center). 1979. (Stanford University Report SLAC-226).
  • Kumar N, Singh U, Kumar A, et al. On the design of a high-efficiency double-beam gyrotron. IEEE Trans Plasma Sci. 2011;39:1781–1785.10.1109/TPS.2011.2160372
  • Kumar N, Singh U, Singh TP, et al. Design of 95 GHz, 2 MW gyrotron for communication and security applications. J Infrared Milli Terahertz Waves. 2011;32:186–195.10.1007/s10762-010-9762-5
  • Singh U, Kumar N, Sinha AK. Magnetron injection gun for a short pulse, 0.67 THz gyrotron for remote detection of radioactive materials. IEEE Trans Terahertz Sci Technol. 2014;4:509–514.
  • Wong SK, Kim JS, Goldberg JD, et al. The design of sheet beam electron gun for high power microwave sources. Proceedings of the 1999 particle accelerator conference; 1999; New York.
  • Kim SG, Sirigiri JR, Lee WS, et al. Design study of critical components of second harmonic a 100 kw, 0.4 THz gyrotron oscillator. 37th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz); 2012; Wollongong.
  • Singh A, Valfells A, Robey CB, et al. Advancements in codes for computer aided design of depressed collectors and tracing of backscattered electrons-part i: optimization of depressed potentials and tracking of multiple orders of backscatter. IEEE Trans Plasma Sci. 2002;30:1265–1270.10.1109/TPS.2002.801627
  • Tsimring SE. Gyrotron electron beams: velocity and energy spread and beam instabilities. Int J Infrared Milli Waves. 2001;22:1433–1468.
  • Yamaguchi Y, Tatematsu Y, Saito T, et al. Formation of a laminar electron flow for 300 GHz high-power pulsed gyrotron. Phys Plasmas. 2012;19:113113.10.1063/1.4768959
  • Kumar N, Singh U, Kumar A, et al. Design of 95 GHz, 100 kW gyrotron for active denial system aplication. Vacuum. 2014;99:99–106.10.1016/j.vacuum.2013.05.002
  • Kesar AS, Petillo JJ, Nusinovich GS, et al. Design of a magnetron injection gun for a 670-GHz 300-kW gyrotron. IEEE Trans Plasma Sci. 2011;39:3337–3344.10.1109/TPS.2011.2170436
  • Singh U, Kumar N, Kumar N, et al. Numerical simulation of magnetron injection gun for 1 MW 120 GHz gyrotron. Prog Electromag Res Lett. 2010;16:21–34.10.2528/PIERL10031503

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.