299
Views
14
CrossRef citations to date
0
Altmetric
Special Issue Article - Current Trends of Graphene Technology

Graphene-based wideband antenna for aeronautical radio-navigation applications

, ORCID Icon, & ORCID Icon
Pages 2046-2054 | Received 22 May 2017, Accepted 15 Jul 2017, Published online: 03 Aug 2017

References

  • Blayo A, Pineaux B. Printing processes, and their potential for RFID printing. Proc SOC-EUSAI. 2005;27–30.
  • Li Y, Lu D, Wong C. Electrical conductive adhesives with nanotechnologie. New York (NY): Springer; 2009.
  • Chen J, Jang C, Xiao S, et al. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol. 2008;3:206–209.
  • Hanson WG. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys. 2008;103:064302-1–064302-8.
  • Mitra A, Waqas M, Khan A, et al. Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags. IEEE Antennas Propag Lett. 2016;15:1569–1572.
  • Ting L, Xianjun H, Kuo HC, et al. Graphene nanoflakes printed flexible meandered-line dipole antenna on paper substrate for low-cost RFID and sensing applications. IEEE Antennas Propag Lett. 2016;15:1565–1568.
  • Akbari M, Virkki J, Sydanheimo L, et al. Toward graphene-based passive UHF RFID textile tags: a reliability study. IEEE Trans Antennas Propag. 2016;16:429–431.
  • Huang X, Leng T, Zhang X, et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Appl Phys Lett. 2015;106:203105-1–203105-4.
  • Pawel K, Bartlomiej S, Marzena O, et al. Graphene-based dipole antenna for a UHF RFID tag. IEEE Trans Antennas Propag. 2016;64:2862–2868.
  • Zheng S, Yin Y, Ren X, et al. A wideband low-profile monopolar patch antenna. Micro Opt Tech Lett. 2011;53:28–32.
  • Juhua L, Quan X, Hau WL, et al. Design and analysis of a low-profile and broadband microstrip monopolar patch antenna. IEEE Trans Antennas Propag. 2013;61:11–18.
  • Jonathan B, Olivier L, Herve M, et al. Technological process to control the foam dielectric constant application to microwave components and antennas. IEEE Trans Compon Package Manuf Technol. 2014;4:938–942.
  • Yong-Ling B, Si-Cheng S, Peng-Peng L, et al. Compact eight-band frequency reconfigurable antenna for LTE/WWAN tablet computer applications. IEEE Trans Antennas Propag. 2014;62:471–475.
  • Lei X, Yi H, Qian X, et al. A broadband hybrid water antenna for hand-portable applications. IEEE Antennas Propag Lett. 2016;15:174–177.
  • Pritam SB, Santanu D, Manas S, et al. Proximity-coupled multiband microstrip antenna for wireless applications. IEEE Antennas Propag Lett. 2016;14:646–649.
  • Abhijyoti G, Sudipta CL, Lolit KS, et al. Proximity-coupled multiband microstrip antenna for wireless applications. Int J RF Microw Comput Aided Eng. 2017. DOI:10.1002/mmce.21127.
  • Huang Y. Radiation efficiency measurements of small antennas. In: Chen ZN, editor. Handbook of Antenna Technologies. Springer Science+Business Media; 2015.
  • John H. Circularly polarized conical patterns from circular microstrip antennas. IEEE Trans Antennas Propag. 1984;AP-32:991–994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.