277
Views
29
CrossRef citations to date
0
Altmetric
Articles

Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory

ORCID Icon &
Pages 138-169 | Received 23 Mar 2017, Accepted 05 Aug 2017, Published online: 08 Sep 2017

References

  • Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56–58.10.1038/354056a0
  • Eringen AC. Linear theory of nonlocal elasticity and dispersion of plane waves. Int J Eng Sci. 1972;10(5):425–435.10.1016/0020-7225(72)90050-X
  • Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–4710.10.1063/1.332803
  • Narendar S, Gopalakrishnan S. Nonlocal scale effects on wave propagation in multi-walled carbon nanotubes. Comput Mater Sci. 2009;47(2):526–538.10.1016/j.commatsci.2009.09.021
  • Wang YZ, Li FM, Kishimoto K. Flexural wave propagation in double-layered nanoplates with small scale effects. J Appl Phys. 2010;108(6):064519.10.1063/1.3481438
  • Narendar S, Gopalakrishnan S. Temperature effects on wave propagation in nanoplates. Composites Part B: Eng. 2012;43(3):1275–1281.10.1016/j.compositesb.2011.11.029
  • Ghadiri M, Shafiei N. Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol. 2015;22:1–15.
  • Ebrahimi F, Hosseini SHS. Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Therm Stresses. 2016;39(5):606–625.10.1080/01495739.2016.1160684
  • Ebrahimi F, Shafiei N. Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy’s higher-order shear deformation plate theory. Mech Adv Mater Struct. 2016;24( just-accepted):1–41.
  • Yang FACM, Chong ACM, Lam DCC, et al. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39(10):2731–2743.10.1016/S0020-7683(02)00152-X
  • Lam DCC, Yang F, Chong ACM, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51(8):1477–1508.10.1016/S0022-5096(03)00053-X
  • Lim CW, Zhang G, Reddy JN. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J Mech Phys Solids. 2015;78:298–313.10.1016/j.jmps.2015.02.001
  • Li L, Hu Y. Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory. Int J Eng Sci. 2015;97:84–94.10.1016/j.ijengsci.2015.08.013
  • Farajpour A, Yazdi MH, Rastgoo A, et al. A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 2016;227:1–19.
  • Li L, Hu Y, Li X. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int J Mech Sci. 2016;115:135–144.10.1016/j.ijmecsci.2016.06.011
  • Ramirez F, Heyliger PR, Pan E. Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J Sound Vib. 2006;292(3):626–644.10.1016/j.jsv.2005.08.004
  • Razavi S, Shooshtari A. Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos Struct. 2015;119:377–384.10.1016/j.compstruct.2014.08.034
  • Ke LL, Wang YS. Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater Struct. 2012;21(2):025018.10.1088/0964-1726/21/2/025018
  • Ke LL, Wang YS, Wang ZD. Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory. Compos Struct. 2012;94(6):2038–2047.10.1016/j.compstruct.2012.01.023
  • Liu C, Ke LL, Wang YS, et al. Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos Struct. 2013;106:167–174.10.1016/j.compstruct.2013.05.031
  • Ke LL, Wang YS. Free vibration of size-dependent magneto-electro-elastic nanobeams based on the nonlocal theory. Phys E: Low Dimen Syst Nanostruct. 2014;63:52–61.10.1016/j.physe.2014.05.002
  • Ke LL, Wang YS, Yang J, et al. Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta Mech Sin. 2014;30(4):516–525.10.1007/s10409-014-0072-3
  • Koizumi M, Niino M. Overview of FGM research in Japan. Mrs. Bulletin. 1995;20(01):19–21.10.1557/S0883769400048867
  • Ebrahimi F, Hashemi M. On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities. Proc Inst Mech Eng, Part G: J Aerosp Eng. 2016;230(10):1903–1916.10.1177/0954410015619647
  • Ebrahimi F, Mokhtari M. Free vibration analysis of a rotating Mori–Tanaka-based functionally graded beam via differential transformation method. Arabian J Sci Eng. 2016;41(2):577–590.10.1007/s13369-015-1689-7
  • Ebrahimi F, Jafari A. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. J Eng. 2016;2016.
  • Ebrahimi F, Jafari A. Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory. Struct Eng Mech. 2016;59(2):343–371.10.12989/sem.2016.59.2.343
  • Ebrahimi F, Jafari A, Barati MR. Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position. Arabian J Sci Eng. 2017;42(5):1865–1881.10.1007/s13369-016-2348-3
  • Ebrahimi F, Jafari A. A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities. Mech Adv Mater Struct. 2017:1–13.
  • Alshorbagy AE, Eltaher MA, Mahmoud FF. Free vibration characteristics of a functionally graded beam by finite element method. Appl Math Model. 2011;35(1):412–425.10.1016/j.apm.2010.07.006
  • Thai HT, Vo TP. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. Int J Mech Sci. 2012;62(1):57–66.10.1016/j.ijmecsci.2012.05.014
  • Thai HT, Choi DH. A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation. Composites Part B: Eng. 2012;43(5):2335–2347.10.1016/j.compositesb.2011.11.062
  • Ebrahimi F. Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment. Mech Adv Mater Struct. 2013;20(10):854–870.10.1080/15376494.2012.677098
  • Esfahani SE, Kiani Y, Eslami MR. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. Int J Mech Sci. 2013;69:10–20.10.1016/j.ijmecsci.2013.01.007
  • Kargani A, Kiani Y, Eslami MR. Exact solution for nonlinear stability of piezoelectric FGM Timoshenko beams under thermo-electrical loads. J Therm Stresses. 2013;36(10):1056–1076.10.1080/01495739.2013.818888
  • Ghiasian SE, Kiani Y, Eslami MR. Nonlinear thermal dynamic buckling of FGM beams. European J Mech-A/Solids. 2015;54:232–242.10.1016/j.euromechsol.2015.07.004
  • Ebrahimi F, Ghasemi F, Salari E. Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica. 2016;51(1):223–249.10.1007/s11012-015-0208-y
  • Barati MR, Shahverdi H, Zenkour, AM. Electro-mechanical vibration of smart piezoelectric FG plates with porosities according to a refined four-variable theory. Mech Adv Mater Struct. 2016;24 (just-accepted), 987–998.
  • Barati MR, Sadr MH, Zenkour AM. Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int J Mech Sci. 2016;117:309–320.10.1016/j.ijmecsci.2016.09.012
  • Natarajan S, Chakraborty S, Thangavel M, et al. Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput Mater Sci. 2012;65:74–80.10.1016/j.commatsci.2012.06.031
  • Hosseini-Hashemi S, Bedroud M, Nazemnezhad R. An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos Struct. 2013;103:108–118.10.1016/j.compstruct.2013.02.022
  • Eltaher MA, Emam SA, Mahmoud FF. Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct. 2013;96:82–88.10.1016/j.compstruct.2012.09.030
  • Şimşek M, Yurtcu HH. Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct. 2013;97:378–386.
  • Daneshmehr A, Rajabpoor A, Hadi A. Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories. Int J Eng Sci. 2015;95:23–35.10.1016/j.ijengsci.2015.05.011
  • Mechab B, Mechab I, Benaissa S, et al. Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations. Appl Math Model. 2016;40(2):738–749.10.1016/j.apm.2015.09.093
  • Ebrahimi F, Salari E. Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos Struct. 2015;128:363–380.10.1016/j.compstruct.2015.03.023
  • Ebrahimi F, Salari E. Size-dependent thermo-electrical buckling analysis of functionally graded piezoelectric nanobeams. Smart Mater Struct. 2015;24(12):125007.10.1088/0964-1726/24/12/125007
  • Ebrahimi F, Barati MR. Vibration analysis of nonlocal beams made of functionally graded material in thermal environment. European Phys J Plus. 2016;131(8):279.10.1140/epjp/i2016-16279-y
  • Ebrahimi F, Salari E. Analytical modeling of dynamic behavior of piezo-thermo-electrically affected sigmoid and power-law graded nanoscale beams. Appl Phys A. 2016;122(9):793.10.1007/s00339-016-0273-7
  • Ebrahimi F, Barati, MR. Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J Vib Control. 2016: 1077546316646239.
  • Ebrahimi F, Barati MR. A nonlocal higher-order refined magneto-electro-viscoelastic beam model for dynamic analysis of smart nanostructures. Int J Eng Sci. 2016;107:183–196.10.1016/j.ijengsci.2016.08.001
  • Kiani K. Thermo-elasto-dynamic analysis of axially functionally graded non-uniform nanobeams with surface energy. Int J Eng Sci. 2016;106:57–76.10.1016/j.ijengsci.2016.05.004
  • Ebrahimi F, Barati MR. Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J Braz Soc Mech Sci Eng. 2016;39:1–16.
  • Barati MR, Zenkour AM, Shahverdi H. Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory. Compos Struct. 2016;141:203–212.10.1016/j.compstruct.2016.01.056
  • Ebrahimi F, Barati MR. Magnetic field effects on buckling behavior of smart size-dependent graded nanoscale beams. European Phys J Plus. 2016;131(7):1–14.
  • Ebrahimi F, Barati MR. Buckling analysis of smart size-dependent higher order magneto-electro-thermo-elastic functionally graded nanosize beams. J Mech. 2016;33:1–11.
  • Narendar S, Gopalakrishnan S. Nonlocal wave propagation in rotating nanotube. Results Phys. 2011;1(1):17–25.10.1016/j.rinp.2011.06.002
  • Zang J, Fang B, Zhang YW, et al. Longitudinal wave propagation in a piezoelectric nanoplate considering surface effects and nonlocal elasticity theory. Phys E: Low Dimen Syst Nanostruct. 2014;63:147–150.10.1016/j.physe.2014.05.019
  • Zhang LL, Liu JX, Fang XQ, et al. Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. European J Mech-A/Solids. 2014;46:22–29.10.1016/j.euromechsol.2014.01.005
  • Zhang YW, Chen J, Zeng W, et al. Surface and thermal effects of the flexural wave propagation of piezoelectric functionally graded nanobeam using nonlocal elasticity. Comput Mater Sci. 2015;97:222–226.10.1016/j.commatsci.2014.10.046
  • Wu B, Zhang C, Chen W, et al. Surface effects on anti-plane shear waves propagating in magneto-electro-elastic nanoplates. Smart Mater Struct. 2015;24(9):095017.10.1088/0964-1726/24/9/095017
  • Ebrahimi F, Barati MR. Wave propagation analysis of quasi-3D FG nanobeams in thermal environment based on nonlocal strain gradient theory. Appl Phys A. 2016;122(9):843.10.1007/s00339-016-0368-1
  • Ebrahimi F, Barati MR, Dabbagh A. A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates. Int J Eng Sci. 2016;107:169–182.10.1016/j.ijengsci.2016.07.008
  • Arani AG, Jamali M, Ghorbanpour-Arani AH, et al. Electro-magneto wave propagation analysis of viscoelastic sandwich nanoplates considering surface effects. Proc Inst Mech Eng, Part C: J Mech Eng Sci. 2016: 0954406215627830.
  • Ebrahimi F, Barati MR. Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory. Arabian J Sci Eng. 2016;42:1–12.
  • Ma LH, Ke LL, Wang YZ, et al. Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models. Phys E: Low Dimen Syst Nanostruct. 2016;86:253–261.
  • Ebrahimi F, Barati MR, Dabbagh A. Wave dispersion characteristics of axially loaded magneto-electro-elastic nanobeams. Appl Phys A. 2016;122(11):949.10.1007/s00339-016-0465-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.