186
Views
0
CrossRef citations to date
0
Altmetric
Special Issue Article - Current Trends of Graphene Technology

Conductance properties of six terminal graphene nanoribbons in presence of a magnetic field: integer quantum Hall effect revisited

&
Pages 1974-1982 | Received 27 Jun 2017, Accepted 16 Aug 2017, Published online: 31 Aug 2017

References

  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896
  • Wallace PR. The band theory of graphite. Phys Rev. 1947;71:622–634.10.1103/PhysRev.71.622
  • Zhang Y, Tan Y-W, Stormer HL, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature. 2005;438:201–204.10.1038/nature04235
  • Gusynin VP, Sharapov SG. Unconventional integer quantum Hall effect in graphene. Phys Rev Lett. 2005;95:146801-1–146801-4.
  • Kan E-J, Li Z, Yang J, et al. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl Phys Lett. 2007;91:243116-1–243116-3.
  • Lin X, Ni J. Half-metallicity in graphene nanoribbons with topological line defects. Phys Rev B. 2011;84:075461-1–075461-7.
  • Du X, Skachko I, Barker A, et al. Approaching ballistic transport in suspended graphene. Nat Nanotech. 2008;3:491–495.10.1038/nnano.2008.199
  • Bolotin KI, Sikes KJ, Hone J, et al. Temperature-dependent transport in suspended graphene. Phys Rev Lett. 2008;101:096802-1–096802-4.
  • von Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys Rev Lett. 1980;45:494–497.10.1103/PhysRevLett.45.494
  • Hartland A. The quantum Hall effect and resistance standards. Metrologia. 1992;29:175–190.10.1088/0026-1394/29/2/006
  • Murakami S, Nagaosa N, Zhang SC. Dissipationless quantum spin current at room temperature. Science. 2003;301:1348–1351.10.1126/science.1087128
  • Sinova J, Culcer D, Niu Q, et al. Universal intrinsic spin Hall effect. Phy. Rev Lett. 2004;92:126603-1–126603-4.
  • Rashba E. Properties of a 2D electron gas with lifted spectrum degeneracy. JETP Lett. 1984;39:78–81.
  • Marchenko D, Varykhalov A, Scholz M, et al. Giant Rashba splitting in graphene due to hybridization with gold. Nat Commun. 2012;3:1232-1–1232-6.
  • Dedkov YS, Fonin M, Rudiger U, et al. Rashba effect in the graphene/Ni(1 1 1) System. Phys Rev Lett. 2008;100:107602-1–107602-4.
  • Calleja F, Ochoa H, Garnica M, et al. Spatial variation of a giant spin-orbit effect induces electron confinement in graphene on Pb islands. Nat Phys. 2015;11:43–47.
  • Kane CL, Mele EJ. Z2 Topological order and the quantum spin Hall effect. Phys Rev Lett. 2005;95:146802-1–146802-4.
  • Kane CL, Mele EJ. Quantum spin Hall effect in graphene. Phys Rev Lett. 2005;95:226801-1–226801-4.
  • Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev. 1957;1:223–231.10.1147/rd.13.0223
  • Landauer R. Electrical resistance of disordered one-dimensional lattices. Philos Mag. 1970;21:863–867.10.1080/14786437008238472
  • Peierls R. On the theory of diamagnetism of conduction electrons. Z Physik. 1933;80:763–791.10.1007/BF01342591
  • Hofstadter DR. Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys Rev B. 1976;14:2239–2249.10.1103/PhysRevB.14.2239
  • Castro Neto AH, Guinea F, Peres NMR, et al. The electronic properties of graphene. Rev Mod Phys. 2009;81:109–162.10.1103/RevModPhys.81.109
  • Maiti SK, Karmakar SN, Dey M. Integer quantum Hall effect in a square lattice revisited. Phys Lett A. 2012;376:1366–1370.10.1016/j.physleta.2012.03.008
  • Chang P-H, Mahfouzi F, Nagaosa N, et al. Spin-Seebeck effect on the surface of a topological insulator due to nonequilibrium spin-polarization parallel to the direction of thermally driven electronic transport. Phys Rev B. 2014;89:195418-1–6.
  • Cresti A, Nikolić BK, García JH, et al. Charge, spin and valley Hall effects in disordered graphene. Rivista Del Nuovo Cimento. 2016;39:587–667.
  • Datta S Electronic transport in mesoscopic systems. Cambridge: University Press; 1995.
  • Nikolić BK. Statistical properties of eigenstates in three-dimensional mesoscopic systems with off-diagonal or diagonal disorder. Phys Rev B. 2001;00:64014203-1–64014203-8.
  • Groth CW, Wimmer M, Akhmerov AR, et al. Kwant: a software package for quantum transport. New J Phys. 2014;16:063065-1–063065-40.
  • Moca CP, Marinescu DC. Longitudinal and spin-Hall conductance of a two-dimensional Rashba system with arbitrary disorder. Phys Rev B. 2005;72:165335-1–165335-6.
  • Sheng L, Ting CS. Asymptotic behavior of spin Hall conductance in mesoscopic two-dimensional electron systems. Phys E. 2006;33:216–222.10.1016/j.physe.2006.02.007
  • Ganguly S, Basu S. Spin Hall conductance in a Y-shaped junction device in presence of tunable spin-orbit coupling. Phys E. 2017;90:131–136.10.1016/j.physe.2017.03.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.