526
Views
15
CrossRef citations to date
0
Altmetric
Articles

Nonlinear analysis of beam-wave interaction in a planar THz travelling-wave tube amplifier

ORCID Icon
Pages 190-203 | Received 30 May 2017, Accepted 27 Aug 2017, Published online: 12 Sep 2017

References

  • Booske JH, Dobbs RJ, Joye CD, et al. Vacuum electronic high power THz sources. IEEE Trans Terahertz Sci Technol. 2011;1(1):54–75.10.1109/TTHZ.2011.2151610
  • Dhillon SS, Vitiello MS, Linfield EH, et al. The 2017 terahertz science & technology roadmap. J Appl Phys. 2017;50(4):043001. DOI:10.1089/1361-6463/50/4/043001
  • Srivastava V. THz vacuum microelectronic devices. J Phys. 2007;114(1):12015–12025.
  • Srivastava V, Ryskin NM. High power amplification at sub-mm wave frequencies using vacuum microelectronic devices. Proc Int conf Submillimeter S & T. 2006; ISBN 01-7764-988-4:230–234.
  • Shu G, Wang J, Liu G, et al. An improved slow-wave structure for the sheet-beam traveling-wave tube. IEEE Trans Electron Devices. 2016;63(5):2089–2096.10.1109/TED.2016.2535911
  • Shin YM, Baig A, Barnett LR, et al. Modeling investigation of a ultra wideband THz sheet beam traveling-wave tube amplifier. IEEE Trans Electron Devices. 2011;58(9):3213–3218.10.1109/TED.2011.2159842
  • Shin YM, Baig A, Barnett LR, et al. System design analysis of a 0.22 THz sheet-beam TWTA, IEEE Trans Electron Devices. 2012;59(1):1792–1798.
  • Baig A, Gamzina D, Barchfeld R, et al. MEMS compatible 220 GHz ultra wide band TWTA: design and particle-in-cell analysis, Prog Electromagn Res Lett. 2013;41:135–148.
  • Chang HK, Kim YK. UV-LIGA process for high aspect ratio structure. Elsevier: Sensors & Actuators. 2000;84(3):342–350. DOI:10.1016/S0924-4247(00)00408-8.
  • Gamzina D, Himes LG, Barchfeld R, et al. Nano-CNC machining of sub-THz vacuum electron devices. IEEE Trans Electron Devices. 2016:63(10): 4067–4073.
  • Waring R, et al. A fast model of a 1-D nonlinear beam-wave interaction for a 225 GHz TWT. IEEE-IVEC. 2015:1–3.
  • Yan W, Hu Y, Tian Y, et al. A three-dimensional nonlinear beam–wave interaction theory for common traveling wave tubes. J Electromagn Waves Appl. 2015;29(16):2178–2190. DOI:10.1080/09205071.2015.1082440.
  • Ke L, Wenxin L, Yong W, Miaomiao C. A nonlinear analysis of the THz serpentine waveguide TWA. Phys Plasmas. 2015;22:043115. DOI:10.1063/1.4917526
  • Chernin D, Antonsen TM, Vlasov AN, et al. 1-D large signal Model of folded-waveguide TWT. IEEE Trans ED. 2014;61(6):1699–1706.10.1109/TED.2014.2298100
  • Vlasov AN, Antonsen TM, Chernyavskiy IA, et al. A computationally efficient 2-Dimensional Model of beam-wave interaction in a coupled-cavity TWT. IEEE Trans PS. 2012;40(6):1575–1589.
  • Wenqiu X, Zi-Cheng W, Jirun L, Ding Z. 3-D large signal Model for Sheet Beam TWTs. IEEE Trans ED. 2015;62(3):1010–1016.
  • Jensen A, Fazio M, Neilson J, et al. Sheet beam klystron simulation capability in AJDISK. IEEE Trans ED. 2014;61(6):1666–1671.10.1109/TED.2014.2298753
  • Nusinovich GS, Cooke SJ, Botton M,et al. Wave coupling in Sheet- and Multiple-beam TWTs. Phys Plasmas. 2009;16(063102):12.
  • Fu C, Wei Y, Zhao B, et al. One-dimensional nonlinear theory for rectangular helix traveling-wave tube. Phys Plasmas. 2016;23(083123):1–8.
  • Erwin K. Advanced engineering mathematics. 10th ed. USA: Wiley; 2010. ISBN 978-0-470-45836-5.
  • Srivastava V, Carter RG. A fast large-signal model for coupled-cavity TWTs. IEEE Trans On Electron Devices (USA). 1988;35(11):2068–2076.
  • Srivastava V, Joshi SN, Improved non-linear model for multi-signal analysis of helix TWTs. IEE Proc (UK). 1992;139(2):129–134.
  • Srivastava V. 2.5-Dimensional multi-signal large signal analysis of helix TWTs. IETE J Res. 2003;49(2):239–246.
  • Srivastava V. SUNRAY-1D and SUNRAY-2.5D Codes for large signal analysis of TWT, IVEC-2013, Paris.
  • Computer Simulation Technology (CST) [Internet]. Available from: www.cst.de
  • Panda PC, Srivastava V, Vohra A. Sheet electron beam analysis for vacuum sub-terahertz devices. IEEE Trans Plasma Sci. 2012;40(9):2119–2125.10.1109/TPS.2012.2205589
  • Panda PC, Srivastava V, Vohra A. Analysis of sheet electron beam transport under uniform magnetic field. IEEE Trans Plasma Sci. 2013;41(3):461–469.10.1109/TPS.2013.2243475
  • Chevalier TC, Herrmann KA, Kory CL, et.al. Three-dimensional simulation of traveling-wave tube cold-test characteristics using CST MICROWAVE STUDIO. NASA/TM-212486. 2003. Available from: https://gltrs.grc.nasa.gov
  • Zhu Z, Jia B, Wei C. Cold simulation on overmoded traveling-wave tube. IEEE-IVEC. 2012;259–260.
  • Collin RE. Foundations for microwave engineering. USA: Wiley-IEEE Press; 2000.
  • Granatstein VL, Parker RK. Microwave tubes. USA: John Wiley; 1999. DOI: 10.1002/0471654507.eme252.
  • Basu BN. Electromagnetic theory and applications in beam-wave electronics, Singapore: World Scientific; 1996.
  • Srivastava V, Joshi SN. Small-signal model for practical helix TWTs considering the effects of severs, attenuators and velocity tapers, IETE J Res. New Delhi; 1993;39(6):55–63.
  • Bruns W. The GdfidL Electromagnetic Field Simulator. Online tutorial; 1996. Available from: www.gdfidl.de
  • Sharma RK, Grede A, Chaudhary S, et al. Design of folded waveguide slow-wave structure for W-Band TWT. IEEE Trans Plasma Sci. 2014;42(10):3430–3436.10.1109/TPS.2014.2352267
  • Srivastava V, Sharma D. Design of a broadband planar RF structure for a 0.22-THz Travelling Wave Tube. Universal J Electr Electron Eng (USA). 2017;5(1):9–19. DOI:10.13189/ujeee.2017.050102
  • Srivastava V, Latha M, Panda PC, et al. Analysis of different structures TWTs using SUNRAY-1D and SUNRAY 2.5D codes. IEEE-IVEC-2015. Beijing; 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.