331
Views
2
CrossRef citations to date
0
Altmetric
Review

A review on the advent of magnetrons at high frequency (mm and THz) gateway

, &
Pages 113-127 | Received 17 Apr 2017, Accepted 27 Aug 2017, Published online: 20 Sep 2017

References

  • Grant AJ. A review on millimetre wave devices. Royal Signals & RADAR Establishment RSRE Memorandum No: 3372; London; 1981.
  • Vavriv D. Spatial-harmonic magnetrons with cold secondary-emission cathode: towards unlimited lifetime. International Conference on the Origins and Evolution of the Cavity Magnetron (CAVMAG); Bournemouth, United Kingdom; 2010. p. 64–66.
  • Avtomonov NI, Naumenko VD, Vavriv DM. Development of terahertz spatial-harmonic magnetrons. European Microwave Conference (EuMC); Nuremberg, Germany: Nuremberg Convention Center Messezentrum; 2013. p. 187–190.
  • Avtomonov NI, Naumenko VD, Vavriv DM, et al. Terahertz spatial-harmonic magnetrons development. 20th International Conference on Microwaves, Radar, and Wireless Communication (MIKON); L`viv, Ukraine: Lviv Polytechnic National University; 2014. p. 1–4.
  • Robertshaw RG, Willshaw WE. Some properties of magnetrons using spatial harmonic operation. Proceedings of the IEE-Part C: Monographs. 1956;103(4):297–306.
  • Vavriv DM, Sosnytskiy SV. A comparison study of conventional and spatial-harmonic magnetrons. 4th IEEE International Conference on Vacuum Electronics (IVEC); May 28–30; Seoul, Korea: Hotel Lotte; 2003. p. 217–218.
  • Unger HG, Naumenko VD, Raguin JY, et al. Space harmonics millimetre wave magnetrons with secondary emission cathodes. International Conference on Microwave and Millimeter Wave Technology Proceedings (ICMMT’98); Aug 18–20; Beijing, China; 1998.
  • Yeryomka VD, Kopot’ MA, Kulagin OP. Modelling of submillimetre magnetron on the first positive space harmonic of Π-mode oscillations. 20th International Crimean Conference “Microwave and Telecommunication Technology (CRMICO); Sep 13–17; Sevastopol, Ukraine; 2010. p. 308–309.
  • Avtomono’ MI, Sosnytskiy SV, Vavriv DM. Investigation and optimization of auxiliary cathode for secondary – emission cold – cathodes magnetrons. German Microwave Conference (GeMIC); Hamburg-Harburg; 2008. p. 1–4.
  • Schunemann K, Sosnytskiy SV, Vavriv DM. Self-consistent simulation of the spatial-harmonic magnetron with cold secondary-emission cathode. IEEE Trans on Electron Devices. 2001;48(5):993–998.
  • Sosnytskiy SV, Vavriv DM, Schunemann K. Physics of spatial-harmonic magnetrons with cold cathode. MSMW’2001 Symposium Proceedings, Kharkov; 2001 Jun 4–9; Kharkov, Ukraine.
  • Sosnytskiy SV, Vavriv DM. Theory of the spatial-harmonic magnetron: an equivalent network approach. IEEE Trans Plasma Sci. 2002;30(3):984–991.
  • Variv DM, Sosnytskiy SV. Mode-interaction effects in spatial-harmonic magnetrons. Third IEEE International Vacuum Electronics Conference (IVEC 2002); Apr 23–25; Monterey, California; 2002. p. 207–208.
  • Avtomonov NI, Sosnytskiy SV, Vavriv DM. Mechanisms of oscillations excitation in the spatial harmonic magnetron with cold secondary-emission cathode. International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW) (IEEE Conference Publication); Jun 21–26; Kharkov, Ukraine; 2010. p. 1–3.
  • Yeryomka VD, Kopot’ MA, Kulagin OP, et al. THz-range spatial-harmonic magnetrons. MSMW’07 Symposium Proceedings, Kharkov, Ukraine; 2007 Jun 25–30.
  • Fursova EV, Sosnytskiy SV, Vavriv DM. Controlling the Circuit Efficiency of Spatial-Harmonic Magnetrons. 17th International Conference on Applied Electromagnetics and Communications (ICECom 2003), Dubrovinik, Croatia; 2003 Oct 1–3.
  • Kim J-II, Jeon S-G, Kim G-J. Numerical and experimental investigation of a 35 GHz 20-vane spatial-harmonic magnetron. 35th International Conference on Infrared, Millimeter, and Terahertz Waves; Sept 5–10; Rome, Italy: Angelicum, Pontificia Universita’ S. Tommaso d’Aquino; 2010. p. 1–2.
  • Kim J-IL, Jeon S-G, Kim G-J, et al. Investigation of millimeter-wavelength 20-vane spatial-harmonic magnetron using three-dimensional particle-in-cell simulation. IEEE Trans Plasma Sci. 2012;40(8):1966–1971.
  • Esfahani NN, Schunemann K. Particle-in-cell simulation of a spatial-harmonic magnetron with a cold secondary emission cathode. IEEE Trans Plasma Sci. 2012;40(12):3512–3519.10.1109/TPS.2012.2222934
  • Avtomonov NI, Naumenko VD, Vavriv DM, et al. Toward terahertz magnetrons: 210-GHz spatial-harmonic magnetron with cold cathode. IEEE Trans on Electron Devices. 2012;59(12):3608–3611.
  • Nasr Esfahani N, Tayarani M, Schunemann K. Design and 3-D particle-in-cell simulation of a 140 GHz spatial-harmonic magnetron. Progress In Electromagnetics Research (PIER). 2013;133:443–458.10.2528/PIER12081310
  • Jiandong L, Li X, Alfadhl Y, et al. Study of a THz spatial harmonic magnetron. IEEE International Vacuum Electronics Conference (IVEC); Apr 27–29; Beijing, China; 2015. p. 1–2.
  • Jiandong L, Li X, Alfadhl Y, et al. Investigation of a 0.2-THz magnetron using 3D particle simulation. Int J Terahertz Sci Technol. 2014;7(3):140–144. Sept. 2014.
  • Yeryomka VD, Kopot’ MA, Kulagin OP. Simulation and experimental breadboarding of 35 GHz spatial harmonic magnetrons with cold cathode. 20th International Crimean Conference Microwave & Telecommunication Technology (CriMiCo); Sep 13–17; Sevastopol, Ukraine; 2010. p. 310–313.
  • Kim J-L, Jeon S-G, Kim G-J, et al. Three-dimensional particle-in-cell simulation of 35 GHz spatial-harmonic magnetron. IEEE International Vacuum Electronics Conference (IVEC); May 18–20; Monterey, CA: The Portola Plaza Hotel in Monterey; 2010. p. 381–382.
  • Yeryomka VD, Kopot’ MA, Kulagin OP. Submillimetric-wave magnetron oscillator: simulation of its specific features. International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW); Jun 21–26; Kharkov, Ukraine; 2010. p. 1–4.
  • Schuenemann K, Serebryannikov AE, Sosnytskiy SV, et al. Optimizing the spatial-harmonic millimetre-wave magnetron. AIP Phys Plasmas. 2003;10(6):2559–2565.
  • Holger HM. Commercial applications of millimeterwaves history, present status, and future trends. IEEE Trans Microwave Theory Tech. 1995;43(7):1639–1653.
  • Naumenko VD, Schuenemann K, Semenuta VY, et al. Mm-wave transmitters using magnetrons with cold secondary-emission cathode. MSMW’98 Symposium Proceedings, Kharkov, Ukraine; 1998 Sep 15–17.
  • Schunemann K, Trush B, Vavriv D, et al. Millimeter wave transmitters on the basis of spatial-harmonic magnetrons with cold secondary-emission cathode for coherent radar systems. 30th European Microwave Conference; Oct 2–6; Paris, France: CNIT, La Défense; 2000. p. 1–3.
  • Yeryomka VD, Kopot’ MA, Kulagin OP. Spatial-harmonic magnetrons – THz electromagnetic radiation oscillators. International Conference on Microwave and Millimeter Wave Technology (ICMMT 2008). Vol. 3; Apr 21–24; Nanjing, China; 2008. p. 1199–1201.
  • Kinross-Wright J, Butler N, Normand S, et al. High power solid-state magnetron transmitters. IEEE International Vacuum Electronics Conference (IVEC); Apr 22–24; Monterey, California; 2008. p. 320–321.
  • Vavriv DM, Volkov VA. Millimeter-wave magnetron transmitter for high-resolution radars. 7th Workshop on High Energy Density and High Power RF, AIP Conference Proceedings; 13–17 Jun; Kalamata, Greece; 2004. p. 320–325.
  • Esfahani NN, Schiinemann K. Application of metamaterials in spatial harmonic magnetrons. IEEE MTT-S International Microwave Symposium; May 17–22; Phoenix, AZ, USA: Phoenix Convention Center; 2015. p. 1–4.
  • Li Shengen, Li Fengling, Yang Jinsheng, et al. Development of a miniaturized W-band spatial harmonic magnetron. IEEE Trans Electron Devices. 2016;63(7):2925–2929.
  • Gilgenbach RM, Lau YY, Foster JE, et al. Innovative inverted magnetron experiments and theory. AFOSR final performance report. Arlington (VA): Air Force Office of Scientific Research; 2015.
  • Gilgenbach RM, Lau YY, French DM, et al. Recirculating planar magnetrons for HPM and millimeter-wave generation. Abstracts IEEE International Conference on Plasma Science. 2010 Jun 20–24; Norfolk, VA, USA: Marriott Norfolk Waterside; 2014; p. 1. DOI:10.1109/PLASMA.2010.5534065
  • Franzi M, Gilgenbach RM, French DM, et al. Recirculating Planar Magnetron modeling and experiments. Abstracts IEEE International Conference on Plasma Science (ICOPS); 2011 Jun 26–30; Chicago, IL, USA: Hyatt Regency, McCormick Place. p. 1. DOI:10.1109/PLASMA.2011.5993338
  • Franzi M, Gilgenbach RM, Hoff BW, et al. Mode control cathode modeling and experiments on a recirculating planar magnetron. 54th APS-DPP; 2012 Nov 2.
  • Franzi M, Gilgenbach RM, Lau YY, et al. Passive mode control in the recirculating planar magnetron. Phys Plasmas. 2013;20:033108. DOI:10.1063/1.4794967
  • Franzi M, Gilgenbach RM, Hoff BW, et al. Microwave oscillations in the recirculating planar magnetron. IEEE 14th International Vacuum Electronics Conference (IVEC); 2013 May 21–23; Paris, France: UIC-P Espaces Congress. p. 1–2.
  • Hoff BW, Franzi M, Greening GB, et al. A compact, Pi-mode extraction scheme for the axial B-field recirculating planar magnetron. AFRL Technical rept. 2011 Aug–2012 Jul.
  • Hoff BW, Franzi M, French DM, et al. A Pi-mode extraction scheme for the axial B-field recirculating planar magnetron. IEEE Thirteenth International Vacuum Electronics Conference (IVEC); 2012 April 24–26; Monterey, CA, USA: Portola Hotel. p. 493–494. DOI:10.1109/IVEC.2012.6262245
  • Franzi M, Gilgenbach RM, Hoff BW, et al. Coaxial all cavity extraction in the recirculating planar magnetron. IEEE International Vacuum Electronics Conference (IVEC); Apr 22–24; Monterey, CA, USA: Portola Hotel; 2014. p. 89–90.
  • Franzi M, Gilgenbach RM, Greening GB, et al. Microwave extraction in the recirculating planar magnetron. IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS); 2014 May 25–29; Washington, DC, USA: Marriott Wardman Park. p. 1. DOI:10.1109/PLASMA.2014.7012355
  • French DM, Hoff BW, Lau YY, et al. Negative, positive and infinite mass properties of a rotating electron beam. Appl Phys Lett. 2010;97:111501.
  • French DM, Simon DH, Lau YY, et al. Electron dynamics and startup in crossed field microwave devices. Abstracts IEEE International Conference on Plasma Science; 2010 Jun 20–24; Norfolk, VA, USA: Marriott Norfolk Waterside. p. 1. DOI:10.1109/PLASMA.2010.5534066
  • French DM, Simon DH, Lau YY, et al. 21.2: Electron dynamics and fast startup in inverted magnetrons. IEEE International Vacuum Electronics Conference (IVEC); 2010 May 18–20; Monterey, CA, USA: The Portola Plaza Hotel in Monterey. p. 509–510. DOI:10.1109/IVELEC.2010.5503481
  • Simon DH, Lau YY, Gilgenbach RM, et al. Buneman-Hartree condition re-visited. Abstracts IEEE International Conference on Plasma Science; 2010 Jun 20–24; Marriott Norfolk Waterside: Norfolk, VA, USA. p. 1. DOI:10.1109/PLASMA.2010.5533892
  • Simon DH, Lau YY, Franzi M, et al. Some unusual properties of the cylindrical Brillouin flow. Abstracts IEEE International Conference on Plasma Science (ICOPS); 2011 Jun 26–30; Chicago, IL, USA: Hyatt Regency, McCormick Place. p. 1. DOI:10.1109/PLASMA.2011.5993336
  • Simon DH, Lau YY, Franzi M, et al. Equilibrium and stability of the brillouin flow in recirculating planar magnetron. 54th APS-DPP; 2012 Oct 30.
  • Simon DH, Lau YY, Franzi M, et al. Brillouin flow in recirculating planar magnetron. IEEE International Vacuum Electronics Conference; 2014 Apr 22–24; Monterey, CA, USA: Portola Hotel. p. 383–384. DOI:10.1109/IVEC.2014.6857650
  • Gilgenbach RM, Lau YY, French DM, et al. 21.1: Recirculating-planar-magnetrons for high power, high-frequency radiation generation. IEEE International Vacuum Electronics Conference (IVEC); 2010 May 18–20; Monterey, CA, USA: The Portola Plaza Hotel in Monterey. p. 507–508. DOI:10.1109/IVELEC.2010.5503480
  • Gilgenbach RM, Lau YY, French DM, et al. Recirculating-planar-magnetrons for high power, high-frequency radiation generation. IEEE Trans Plasma Sci. 2011;39:980–987.10.1109/TPS.2010.2099670
  • Franzi M, Gilgenbach R, Lau YY, et al. Passive mode control in the recirculating planar magnetron. Phys Plasmas. 2013;20(3):033108. DOI:10.1063/1.4794967
  • Greening GB, Jordan NM, Exelby SC, et al. Experimental microwave power extraction in the multi-frequency recirculating planar magnetron. IEEE International Vacuum Electronics Conference (IVEC); Apr 27–29; Beijing, China; 2015. p. 1–2.
  • Franzi M, Greening GB, Jordan NM, et al. Microwave power and phase measurements on a recirculating planar magnetron. IEEE Trans Plasma Sci. 2015;43:1675.10.1109/TPS.2015.2417774
  • Jordan NM, Franzi MA, Greening GB, et al. Microwave power measurements on the recirculating planar magnetron”, 56th APS-DPP; 2014 Oct 31.
  • Gilgenbach RM, Franzi MA, French DM, et al. Recirculating planar magnetron modeling and experiments. 52nd APS DPP, 2010 Nov 11.
  • Franzi MA, Gilgenbach RM, Hoff BW, et al. Microwave oscillations in the recirculating planar magnetron. IEEE 14th International Vacuum Electronics Conference (IVEC); 2013 May 21–23; Paris, France: UIC-P Espaces Congress. p. 1–2.
  • Franzi MA, Gilgenbach RM, Hoff BW, et al. Mode control and extraction in the recirculating planar magnetron. 55th APS-DPP, 2013 Nov 15.
  • Franzi MA, Gilgenbach RM, Hoff BW, et al. Recirculating planar magnetron simulations and experiments. IEEE Trans Plasma Sci. 2013;41:639–645.10.1109/TPS.2013.2242493
  • Franzi M, Gilgenbach R, Hoff BW, et al. Microwave oscillations in the recirculating planar magnetron. IEEE International Vacuum Electronics Conference (IVEC); May 21–23; UIC-P Espaces Congress: Paris, France; 2013. p. 1–2.
  • Greening G, Franzi M, Gilgenbach R, et al. Multi-frequency recirculating planar magnetrons. IEEE International Vacuum Electronics Conference; 2014 Apr 22–24; Monterey, CA, USA: Portola Hotel. p. 231–232. DOI:10.1109/IVEC.2014.6857575
  • Zhang P, Simon D, Lau YY, et al. A dual-frequency slow wave amplifier. Work was supported by AFOSR, ONR, AFRL, and L-3 Communications Electron Devices. 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS); 25–29 May; Washington DC, USA; 2014. DOI:10.1109/PLASMA.2014.7012551
  • Greening GB, Franzi M, Lau YY, et al. Design of a prototype multi-frequency recirculating planar magnetron. 41st IEEE International Conference on Plasma Science (ICOPS) held with IEEE International Conference on High –Power Particle Beams (BEAMS); May 25–29; Washington DC, USA; 2014. p. 1.
  • Greening GB, Jordan NM, Exelby SC, et al. Experimental microwave power extraction in the multi-frequency recirculating planar magnetron. IEEE International Vacuum Electronics Conference (IVEC); Apr 27–29; Beijing, China; 2015. p. 1–2.
  • Greening GB, Jordan NM, Exelby SC, et al, Harmonic frequency generation in the multi-frequency recirculating planar magnetron. IEEE International Conference on Plasma Science (ICOPS); 19–23 Jun; Tunnel Mtn Drive Banff, AB, Canada: Banff Conference Centre, 107; 2016.
  • Gilgenbach RM, Lau YY, French DM, et al. Crossed field device. US Patent No. US8,841,867 B2. 2014 Sep 23.
  • Boot HAH, Foster H, Self SA. A new design of high-power S-band magnetron. The Institute of Electrical Engineers, Paper No. 2637, 1958 May.
  • Okress E, editor. Crossed-field microwave devices. New York (NY): Academic Press; 1961.
  • Feng J-J, Carter RG, Liao F-J. Simulation of a long anode magnetron resonant system using MAFIA. Microwave and Millimeter Wave Technology Proceedings, IEEE; 1998 Aug. p. 748–751.
  • Verma RK, Maurya S, Singh VVP. Study of mode control in long-anode high-power pulse magnetron. IEEE Trans Plasma Sci. 2014;42(12):4010–4014.
  • Verma RK, Maurya S, Singh VP. Particle-In-Cell (PIC) simulation of Long-anode Magnetron. In: 2nd International Conference on Communication Systems. New York (NY): AIP; 2015. p. 020045. DOI:10.1063/1.4942727
  • Small JG. Optical magnetron generator. US Patent No. US6,525,477 B2, 2003 Feb 25.
  • Larraza A, Wolfe DM, Catterlin JK. Terahertz (THz) reverse micromagnetron. US patent No. US8,446,096 B1. 2013 May 21.
  • Velazco JE. Miniature sub-millimeter wave magnetron oscillator. Status Report, Final Report by Microwave Technologies Incorporated, Sponsored By U.S. Army Research Office; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.