680
Views
22
CrossRef citations to date
0
Altmetric
Review

Classical light vs. nonclassical light: characterizations and interesting applications

ORCID Icon &
Pages 229-264 | Received 03 May 2017, Accepted 04 Sep 2017, Published online: 21 Nov 2017

References

  • Chandrasekhar S. Truth and beauty: aesthetics and motivations in science. New Delhi: Penguin Books India; 1987.
  • Maxwell JC. A dynamical theory of the electromagnetic field. Philos Trans R Soc London. 1865;155:459–512.
  • Planck M. On the law of distribution of energy in the normal spectrum. Ann Phys. 1901;4(553):1.
  • Stachel J. Einstein’s miraculous year: five papers that changed the face of physics. Princeton: Princeton University Press; 1999.
  • Einstein A. Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt. Ann Phys. 1905;322(6):132–148.
  • Hertz H. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann Phys. 1887;267(8):983–1000.
  • Ghatak A. Optics. 6th ed. New Delhi, India: McGraw Hill Education; 2017.
  • Bosanac S. Semiclassical theory of compton and photoelectric effects. Eur Phys J D. 1998;1(3):317–327.
  • Bennett CH. Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing. Bangalore, India: IEEE; 1984. p. 175–179.
  • Bennett CH. Quantum cryptography using any two nonorthogonal states. Phys Rev Lett. 1992;68(21):3121–3124.
  • Bennett CH, Brassard G, Crépeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys Rev Lett. 1993;70(13):1895–1899.
  • Bennett CH, Wiesner SJ. Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett. 1992;69(20):2881–2884.
  • Mattle K, Weinfurter H, Kwiat PG, et al. Dense coding in experimental quantum communication. Phys Rev Lett. 1996;76(25):4656–4659.
  • Lewis GN. The conservation of photons. Nature. 1926;118(2981):874–875.
  • Einstein A. Autobiographical notes, ed. Paul Arthur Schlipp, Open Court; 1979.
  • Bialynicki-Birula I. On the wave function of the photon. Acta Phys Pol Ser A Gen Phys. 1994;86(1):97–116.
  • Inagaki T. Physical meaning of the photon wave function. Phys Rev A. 1998;57(3):2204–2207.
  • Sipe J. Photon wave functions. Phys Rev A. 1995;52(3):1875–1883.
  • Barnett SM, Loudon R. The enigma of optical momentum in a medium. Philos Trans R Soc London A Math Phys Eng Sci. 1914;2010(368):927–939.
  • Barnett SM. Resolution of the Abraham-Minkowski dilemma. Phys Rev Lett. 2010;104(7):070401.
  • Lamb W. Anti-photon. Appl Phys B Lasers Opt. 1995;60(2):77–84.
  • Fox M. Quantum optics: an introduction. Vol. 15. Oxford: Oxford University Press; 2006.
  • Raman C. A classical derivation of the compton effect. Indian J Phys. 1928;3:357–369.
  • De Broglie L. Ondes et quanta. Comptes Rendus Acad Sci. 1923;177:507–510.
  • De Broglie L. Quanta de lumière, diffraction et interférences. Comptes Rendus Acad Sci. 1923;177:548–550.
  • De Broglie L. Waves and quanta. Nature. 1923;112:540.
  • Cropper WH. The quantum physicists and an introduction to their physics. New York: Oxford University Press; 1970.
  • Einstein A. Zur quantentheorie der strahlung. Phys Z. 1917;18:121.
  • Dirac PA. The quantum theory of the emission and absorption of radiation. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 114. The Royal Society; 1927. p. 243–265. Available at http://rspa.royalsocietypublishing.org/content/royprsa/114/767/243.full.pdf
  • Bose SN. Plancks gesetz und lichtquantenhypothese. Z Phys. 1924;26(3):178–181.
  • Agarwal GS. Quantum optics. Cambridge: Cambridge University Press; 2012.
  • Nobel doubts; 2005. Available from: https://www.insidehighered.com/news/2005/12/07/nobel
  • Nobel prize: elusive recognition; 2005. Available from: http://www.frontline.in/navigation/?type=static\&page=flonnet\&rdurl=fl2224/stories/20051202002210000.htm
  • Scientists question nobel; 2005. Available from: http://www.thecrimson.com/article/2005/12/6/scientists-question-nobel-a-group-of/
  • Glauber RJ. Photon correlations. Phys Rev Lett. 1963;10(3):84–86.
  • Sudarshan E. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys Rev Lett. 1963;10(7):277–279.
  • Glauber RJ. Coherent and incoherent states of the radiation field. Phys Rev. 1963;131(6):2766–2788.
  • Simon R, Srinivas M. Sudarshan’s diagonal representation: the ecstacy and agony of another major discovery in science. In: Journal of Physics: Conference Series. Vol. 196. IOP Publishing; 2009. p. 012016. Available from: http://iopscience.iop.org/article/10.1088/1742-6596/196/1/012016/meta
  • Knight P, Gerry G. Introductory quantum optics. Cambridge: Cambridge University Press; 2005.
  • Kiesel T, Vogel W, Parigi V, et al. Experimental determination of a nonclassical Glauber-Sudarshan p function. Phys Rev A. 2008;78(2):021804.
  • Miquel C, Paz JP, Saraceno M, et al. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature. 2002;418(6893):59–62.
  • Smithey DT, Beck M, Raymer MG, et al. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys Rev Lett. 1993;70(9):1244–1247.
  • Smithey DT, Beck M, Cooper J, et al. Complete experimental characterization of the quantum state of a light mode via the Wigner function and the density matrix: application to quantum phase distributions of vacuum and squeezed-vacuum states. Phys Scr. 1993;1993(T48):35.
  • Banaszek K, Radzewicz C, Wódkiewicz K, et al. Direct measurement of the wigner function by photon counting. Phys Rev A. 1999;60(1):674–677.
  • Thapliyal K, Banerjee S, Pathak A. Tomograms for open quantum systems: in (finite) dimensional optical and spin systems. Ann Phys. 2016;366:148–167.
  • Miranowicz A, Bartkowiak M, Wang X, et al. Testing nonclassicality in multimode fields: a unified derivation of classical inequalities. Phys Rev A. 2010;82(1):013824.
  • Richter T, Vogel W. Nonclassicality of quantum states: a hierarchy of observable conditions. Phys Rev Lett. 2002;89(28):283601.
  • Shchukin EV, Vogel W. Nonclassical moments and their measurement. Phys Rev A. 2005;72(4):043808.
  • Shchukin E, Vogel W. Inseparability criteria for continuous bipartite quantum states. Phys Rev Lett. 2005;95(23):230502.
  • Miranowicz A, Piani M, Horodecki P, et al. Inseparability criteria based on matrices of moments. Phys Rev A. 2009;80(5):052303.
  • Miranowicz A, Bartkiewicz K, Pathak A, et al. Statistical mixtures of states can be more quantum than their superpositions: comparison of nonclassicality measures for single-qubit states. Phys Rev A. 2015;91(4):042309.
  • Nieto MM. The discovery of squeezed states-in 1927; 1997. arXiv preprint quant-ph/9708012.
  • Schrödinger E. Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften. 1926;14(28):664–666.
  • Kennard EH. Zur Quantenmechanik einfacher Bewegungstypen. Z Phys. 1927;44(4–5):326–352.
  • Darwin CG. Free motion in the wave mechanics. Proc R Soc London Ser A. 1927;117(776):258–293.
  • Dodonov V. ‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years. J Opt B Quantum Semiclassical Opt. 2002;4(1):R1.
  • Escher B, Avelar A, da Rocha Filho T, et al. Controlled hole burning in the fock space via conditional measurements on beam splitters. Phys Rev A. 2004;70(2):025801.
  • Baseia B, Dantas CM. A note on hole burning in the fock space. Phys Lett A. 1999;253(3–4):123–124.
  • Gerry CC, Benmoussa A. Hole burning in the fock space of optical fields. Phys Lett A. 2002;303(1):30–36.
  • Avelar A, Baseia B. Controlled hole burning in fock space via resonant interaction. Phys Rev A. 2005;72(2):025801.
  • Baseia B, Moussa M, Bagnato V. Hole burning in fock space. Phys Lett A. 1998;240(6):277–281.
  • Miranowicz A, Piatek K, Tanaś R. Coherent states in a finite-dimensional hilbert space. Phys Rev A. 1994;50(4):3423–3426.
  • Leonski W. Finite-dimensional coherent-state generation and quantum-optical nonlinear oscillator models. Phys Rev A. 1997;55(5):3874–3878.
  • Agarwal G, Tara K. Nonclassical properties of states generated by the excitations on a coherent state. Phys Rev A. 1991;43(1):492–497.
  • Zavatta A, Viciani S, Bellini M. Quantum-to-classical transition with single-photon-added coherent states of light. Science. 2004;306(5696):660–662.
  • Dodonov VV, Man’ko VI. Theory of nonclassical states of light. London: CRC Press; 2003.
  • Verma A, Sharma NK, Pathak A. Higher order antibunching in intermediate states. Phys Lett A. 2008;372(34):5542–5551.
  • Verma A, Pathak A. Reduction of quantum phase fluctuations in intermediate states. Phys Lett A. 2009;373(16):1421–1428.
  • Verma A, Pathak A. Generalized structure of higher order nonclassicality. Phys Lett A. 2010;374(8):1009–1020.
  • Stoler D, Saleh B, Teich M. Binomial states of the quantized radiation field. J Mod Opt. 1985;32(3):345–355.
  • Vidiella-Barranco A, Roversi J. Statistical and phase properties of the binomial states of the electromagnetic field. Phys Rev A. 1994;50(6):5233–5241.
  • Moussa M, Baseia B. Generation of the reciprocal-binomial state. Phys Lett A. 1998;238(4):223–226.
  • Fu HC, Sasaki R. Generalized binomial states: ladder operator approach. J Phys A Math Gen. 1996;29(17):5637–5644.
  • Roy P, Roy B. A generalized nonclassical state of the radiation field and some of its properties. J Phys A Math Gen. 1997;30(21):L719.
  • Fan HY, Liu Nl. New generalized binomial states of the quantized radiation field. Phys Lett A. 1999;264(2):154–161.
  • Barnett SM. Negative binomial states of the quantized radiation field. J Mod Opt. 1998;45(10):2201–2205.
  • Obada AS, Darwish M, Salah H. Odd-excited binomial states of the radiation field and some of their statistical properties. Int J Theor Phys. 2002;41(9):1755–1768.
  • Wang XG, Fu HC. Excited binomial states and excited negative binomial states of the radiation field and some of their statistical properties. Int J Theor Phys. 2000;39(6):1437–1444.
  • Fu HC, Sasaki R. Hypergeometric states and their nonclassical properties. J Math Phys. 1997;38(5):2154–2166.
  • Hy Fan, Liu Nl. Negative hypergeometric states of the quantized radiation field. Phys Lett A. 1998;250(1–3):88–92.
  • Miranowicz A, Paprzycka M, Pathak A, et al. Phase-space interference of states optically truncated by quantum scissors: generation of distinct superpositions of qudit coherent states by displacement of vacuum. Phys Rev A. 2014;89(3):033812.
  • Pathak A, Banerji J. Wigner distribution, nonclassicality and decoherence of generalized and reciprocal binomial states. Phys Lett A. 2014;378(3):117–123.
  • Miranowicz A, Leoński W. Dissipation in systems of linear and nonlinear quantum scissors. J Opt B Quantum Semiclassical Opt. 2004;6(3):S43.
  • Maiman TH. Stimulated optical radiation in ruby. Nature. 1960;187: 493–494.
  • Schawlow AL, Townes CH. Infrared and optical masers. Phys Rev. 1958;112:1940–1949.
  • Franken P, Hill AE, Peters Ce, et al. Generation of optical harmonics. Phys Rev Lett. 1961;7(4):118–119.
  • Bass M, Franken PA, Hill AE, et al. Optical mixing. Phys Rev Lett. 1962;8:18–18.
  • Campagnola P. Second harmonic generation imaging microscopy: applications to diseases diagnostics. Anal Chem. 2011;83(9):3224–3231.
  • Zoumi A, Yeh A, Tromberg BJ. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Nat Acad Sci. 2002;99(17):11014–11019.
  • Tilbury K, Campagnola PJ. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect Med Chem. 2015;7:21–32.
  • Pathak A, Banerjee A. Optical quantum information and quantum communication. Washington: SPIE Spotlight; 2016.
  • Hanamura E, Kawabe Y, Yamanaka A. Quantum nonlinear optics. Berlin Heidelberg: Springer Science & Business Media; 2007.
  • Peyronel T, Firstenberg O, Liang QY, et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature. 2012;488(7409):57–60.
  • Chang DE, Vuletić V, Lukin MD. Quantum nonlinear optics -- photon by photon. Nat Photonics. 2014;8(9):685–694.
  • Dutt A, Luke K, Manipatruni S, et al. On-chip optical squeezing. Phys Rev Appl. 2015;3(4):044005.
  • Reimer C, Caspani L, Clerici M, et al. Integrated frequency comb source of heralded single photons. Opt Express. 2014;22(6):6535–6546.
  • Glasser RT, Vogl U, Lett PD. Stimulated generation of superluminal light pulses via four-wave mixing. Phys Rev Lett. 2012;108(17):173902.
  • Wu Y, Payne M, Hagley E, et al. Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference. Phys Rev A. 2004;70(6):063812.
  • Fiorentino M, Voss PL, Sharping JE, et al. All-fiber photon-pair source for quantum communications. IEEE Photonics Technol Lett. 2002;14(7):983–985.
  • Ding DS, Jiang YK, Zhang W, et al. Observation of optical filtering effects with four-wave mixing in a cold atomic ensemble; 2014. arXiv preprint arXiv:14107931.
  • Agha I, Davanço M, Thurston B, et al. Low-noise chip-based frequency conversion by four-wave-mixing bragg scattering in sin x waveguides. Opt Lett. 2012;37(14):2997–2999.
  • Zhang Y, Wen F, Zhen YR, et al. Coherent fano resonances in a plasmonic nanocluster enhance optical four-wave mixing. Proc Nat Acad Sci. 2013;110(23):9215–9219.
  • Liu X, Osgood RM, Vlasov YA, et al. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides. Nat Photonics. 2010;4(8):557–560.
  • Wang Y, Lin CY, Nikolaenko A, et al. Four-wave mixing microscopy of nanostructures. Adv Optics Photonics. 2011;3(1):1–52.
  • Harris S, Hau LV. Nonlinear optics at low light levels. Phys Rev Lett. 1999;82(23):4611–4614.
  • Knill E, Laflamme R, Milburn GJ. A scheme for efficient quantum computation with linear optics. Nature. 2001;409(6816):46–52.
  • Hansryd J, Andrekson PA, Westlund M, et al. Fiber-based optical parametric amplifiers and their applications. IEEE J Sel Top Quantum Electron. 2002;8(3):506–520.
  • Fabre C, Giacobino E, Heidmann A, et al. Noise characteristics of a non-degenerate optical parametric oscillator-application to quantum noise reduction. J Phys. 1989;50(10):1209–1225.
  • Johnson B, Newell V, Clark J, et al. Narrow-bandwidth low-divergence optical parametric oscillator for nonlinear frequency-conversion applications. JOSA B. 1995;12(11):2122–2127.
  • Gao J, Cui F, Xue C, et al. Generation and application of twin beams from an optical parametric oscillator including an α-cut ktp crystal. Opt Lett. 1998;23(11):870–872.
  • Schneider A, Neis M, Stillhart M, et al. Generation of terahertz pulses through optical rectification in organic dast crystals: theory and experiment. JOSA B. 2006;23(9):1822–1835.
  • Sala K, Richardson M. Optical Kerr effect induced by ultrashort laser pulses. Phys Rev A. 1975;12(3):1036–1047.
  • Mamyshev P. All-optical data regeneration based on self-phase modulation effect. In: 24th European Conference on Optical communication, 1998. Vol. 1. Madrid: IEEE; 1998. p. 475–476.
  • Shapiro JH, Razavi M. Continuous-time cross-phase modulation and quantum computation. New J Phys. 2007;9(1):16.
  • Larochelle S, Hibino Y, Mizrahi V, et al. All-optical switching of grating transmission using cross-phase modulation in optical fibres. Electron Lett. 1990;26(18):1459–1460.
  • Jullien A, Kourtev S, Albert O, et al. Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme. Appl Phys B Lasers Opt. 2006;84(3):409–414.
  • Giuliano CR. Applications of optical phase conjugation. Phys Today. 1981;34(4):27–35.
  • Pepper DM. Applications of optical phase conjugation. Sci Am. 1986;254:74–83.
  • Lutterbach L, Davidovich L. Method for direct measurement of the wigner function in cavity qed and ion traps. Phys Rev Lett. 1997;78(13):2547–2550.
  • Bertet P, Auffeves A, Maioli P, et al. Direct measurement of the wigner function of a one-photon fock state in a cavity. Phys Rev Lett. 2002;89(20):200402.
  • Teich MC, Saleh BE. Squeezed state of light. Quantum Opt J Eur Opt Soc Part B. 1989;1(2):153–191.
  • Kimble HJ, Dagenais M, Mandel L. Photon antibunching in resonance fluorescence. Phys Rev Lett. 1977;39(11):691–695.
  • Short R, Mandel L. Observation of sub-poissonian photon statistics. Phys Rev Lett. 1983;51(5):384–387.
  • Slusher R, Hollberg L, Yurke B, et al. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys Rev Lett. 1985;55(22):2409–2412.
  • Yuen HP, Shapiro JH. Generation and detection of two-photon coherent states in degenerate four-wave mixing. Opt Lett. 1979;4(10):334–336.
  • Pirkkalainen JM, Damskägg E, Brandt M, et al. Squeezing of quantum noise of motion in a micromechanical resonator. Phys Rev Lett. 2015;115(24):243601.
  • Rashid M, Tufarelli T, Bateman J, et al. Experimental realization of a thermal squeezed state of levitated optomechanics. Phys Rev Lett. 2016;117(27):273601.
  • Allevi A, Olivares S, Bondani M. Measuring high-order photon-number correlations in experiments with multimode pulsed quantum states. Phys Rev A. 2012;85(6):063835.
  • Avenhaus M, Laiho K, Chekhova M, et al. Accessing higher order correlations in quantum optical states by time multiplexing. Phys Rev Lett. 2010;104(6):063602.
  • Hamar M, Michálek V, Pathak A. Non-classical signature of parametric fluorescence and its application in metrology. Meas Sci Rev. 2014;14(4):227–236.
  • Pathak A, Verma A. Recent developments in the study of higher order nonclassical states. Indian J Phys. 2010;84(8):1005–1019.
  • Brown RH, Twiss R. A test of a new type of stellar interferometer on sirius. Nature. 1956;178(4541):1046–1048.
  • Hong C, Ou ZY, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett. 1987;59(18):2044–2046.
  • Santori C, Fattal D, Vuckovic J, et al. Indistinguishable photons from a single-photon device. Nature. 2002;419(6907):594–597.
  • Lo HK, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett. 2012;108(13):130503.
  • Hollenhorst JN. Quantum limits on resonant-mass gravitational-radiation detectors. Phys Rev D. 1979;19:1669–1679.
  • Aasi J, Abadie J, Abbott B, et al. Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light. Nat Photonics. 2013;7(8):613–619.
  • Grote H, Danzmann K, Dooley K, et al. First long-term application of squeezed states of light in a gravitational-wave observatory. Phys Rev Lett. 2013;110(18):181101.
  • Schechter B. Searching for gravity waves with interferometers. Phys Today. 1986;39(2):17–18.
  • Caves CM. Quantum-mechanical noise in an interferometer. Phys Rev D. 1981;23(8):1693–1708.
  • Teich MC, Saleh BE. Squeezed and antibunched light. Phys Today. 1990;43(6):26–34.
  • Shapiro JH. Optical waveguide tap with infinitesimal insertion loss. Opt Lett. 1980;5(8):351–353.
  • Furusawa A, Sørensen JL, Braunstein SL, et al. Unconditional quantum teleportation. Science. 1998;282(5389):706–709.
  • Hillery M. Quantum cryptography with squeezed states. Phys Rev A. 2000;61(2):022309.
  • Braunstein SL, Van Loock P. Quantum information with continuous variables. Rev Mod Phys. 2005;77(2):513–577.
  • Braunstein SL, Pati AK. Quantum information with continuous variables. Dordrecht: Springer Science & Business Media; 2012.
  • Walls D. Squeezed states of light. Nature. 1983;306(5939):141–146.
  • Loudon R, Knight PL. Squeezed light. J Mod Opt. 1987;34(6–7):709–759.
  • Andersen UL, Gehring T, Marquardt C, et al. 30 years of squeezed light generation. Phys Scr. 2016;91(5):053001.
  • Ghatak A, Pathak A, Sharma V, editors. Light and its many wonders. New Delhi: Viva; 2015.
  • Loudon R. Non-classical effects in the statistical properties of light. Rep Prog Phys. 1980;43(7):913–949.
  • Khasminskaya S, Pyatkov F, Słowik K, et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat Photonics. 2016;10(11):727–732.
  • Teich MC, Prucnal PR, Vannucci G, et al. Multiplication noise in the human visual system at threshold. Biol Cybern. 1982;44(3):157–165.
  • Pathak A. A mathematical criterion for single photon sources used in quantum cryptography. Indian J Phys. 2007;8(5):495–499.
  • Thapliyal K, Pathak A, Sen B, et al. Higher-order nonclassicalities in a codirectional nonlinear optical coupler: quantum entanglement, squeezing, and antibunching. Phys Rev A. 2014;90(1):013808.
  • Thapliyal K, Pathak A, Sen B, et al. Nonclassical properties of a contradirectional nonlinear optical coupler. Phys Lett A. 2014;378(46):3431–3440.
  • Pathak A, Krepelka J, Perina J. Nonclassicality in Raman scattering: quantum entanglement, squeezing of vacuum fluctuations, sub-shot noise and joint photon-phonon number and integrated-intensity distributions. Phys Lett A. 2013;377(38):2692–2701.
  • Zwiller V, Blom H, Jonsson P, et al. Single quantum dots emit single photons at a time: antibunching experiments. Appl Phys Lett. 2001;78(17):2476–2478.
  • Zhou Y, Shen H, Shao X, et al. Strong photon antibunching with weak second-order nonlinearity under dissipation and coherent driving. Opt Express. 2016;24(15):17332–17344.
  • Gulati GK, Srivathsan B, Chng B, et al. Generation of an exponentially rising single-photon field from parametric conversion in atoms. Phys Rev A. 2014;90(3):033819.
  • Stevens MJ, Glancy S, Nam SW, et al. Third-order antibunching from an imperfect single-photon source. Opt Express. 2014;22(3):3244–3260.
  • Garraway BM, Sherman B, Moya-Cessa H, et al. Generation and detection of nonclassical field states by conditional measurements following two-photon resonant interactions. Phys Rev A. 1994;49:535–547.
  • Vogel K, Akulin VM, Schleich WP. Quantum state engineering of the radiation field. Phys Rev Lett. 1993;71:1816–1819.
  • Janszky J, Domokos P, Szabó S, et al. Quantum-state engineering via discrete coherent-state superpositions. Phys Rev A. 1995;51(5):4191–4193.
  • Janszky J, Domokos P, Adam P. Coherent states on a circle and quantum interference. Phys Rev A. 1993;48(3):2213–2219.
  • Domokos P, Janszky J, Adam P, et al. Role of quantum interference in producing non-classical states. Quantum Opt J Eur Opt Soc Part B. 1994;6(3):187.
  • Özdemir ŞK, Miranowicz A, Koashi M, et al. Quantum-scissors device for optical state truncation: a proposal for practical realization. Phys Rev A. 2001;64(6):063818.
  • Miranowicz A, Leonski W, Imoto N. Quantum-optical states in finite-dimensional hilbert space. i. general formalism. Modern Nonlinear Optics Part 1 Second Edition. 2003;119:155–193.
  • Miranowicz A. Quantum-optical states in finite-dimensional hilbert space. ii. state generation. Advances in Chemical Physics, Volume 119, Part 1: Modern Nonlinear Optics. 2003;155:195–213.
  • Babichev S, Ries J, Lvovsky A. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. Europhys Lett. 2003;64(1):1–7.
  • Miranowicz A. Optical-state truncation and teleportation of qudits by conditional eight-port interferometry. J Opt B Quantum Semiclassical Opt. 2005;7(5):142–150.
  • Abruzzo S, Kampermann H, Bruß D. Measurement-device-independent quantum key distribution with quantum memories. Phys Rev A. 2014;89(1):012301.
  • Kak S. A three-stage quantum cryptography protocol. Found Phys Lett. 2006;19(3):293–296.
  • Lucamarini M, Mancini S. Secure deterministic communication without entanglement. Phys Rev Lett. 2005;94(14):140501.
  • Elitzur AC, Vaidman L. Quantum mechanical interaction-free measurements. Found Phys. 1993;23(7):987–997.
  • Guo GC, Shi BS. Quantum cryptography based on interaction-free measurement. Phys Lett A. 1999;256(2):109–112.
  • Sharma RD, Thapliyal K, Pathak A, et al. Which verification qubits perform best for secure communication in noisy channel? Quantum Inf Process. 2016;15(4):1703–1718.
  • Boström K, Felbinger T. Deterministic secure direct communication using entanglement. Phys Rev Lett. 2002;89(18):187902.
  • Chong SK, Hwang T. Quantum key agreement protocol based on bb84. Optics Commun. 2010;283(6):1192–1195.
  • Shi GF, Xi XQ, Hu ML, et al. Quantum secure dialogue by using single photons. Opt Commun. 2010;283(9):1984–1986.
  • ID Quantique home page; 2017. Available from: http://www.idquantique.com/
  • Toshiba home page; 2017. Available from: http://www.toshiba.eu/eu/Cambridge-Research-Laboratory/Quantum-Information-Group/Quantum-Key-Distribution/Toshiba-QKD-system/
  • Mitshubishi Electric: quantum cryptography; 2017. Available from: http://www.mitsubishielectric.com/company/rd/research/highlights/communications/quantum.html/
  • QUANTIS random number generator; 2017. Available from: http://www.idquantique.com/random-number-generation/quantis-random-number-generator/
  • Pittman T, Jacobs B, Franson J. Single photons on pseudodemand from stored parametric down-conversion. Phys Rev A. 2002;66(4):042303.
  • Migdall A, Branning D, Castelletto S. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source. Phys Rev A. 2002;66(5):053805.
  • Pati AK. Minimum classical bit for remote preparation and measurement of a qubit. Phys Rev A. 2000;63(1):014302.
  • Li WL, Li CF, Guo GC. Probabilistic teleportation and entanglement matching. Phys Rev A. 2000;61(3):034301.
  • Sisodia M, Verma V, Thapliyal K, et al. Teleportation of a qubit using entangled non-orthogonal states: a comparative study. Quantum Inf Process. 2017;16(3):76.
  • Hillery M, Bužek V, Berthiaume A. Quantum secret sharing. Phys Rev A. 1999;59(3):1829–1834.
  • Wang D, Ye L. Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int J Theor Phys. 2013;52(9):3075–3085.
  • Shukla C, Thapliyal K, Pathak A. Hierarchical joint remote state preparation in noisy environment. Quantum Inf Process. 2017;16(8): 205.
  • Thapliyal K, Pathak A. Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf Process. 2015;14(7):2599–2616.
  • Thapliyal K, Verma A, Pathak A. A general method for selecting quantum channel for bidirectional controlled state teleportation and other schemes of controlled quantum communication. Quantum Inf Process. 2015;14(12):4601–4614.
  • Sharma V, Shukla C, Banerjee S, et al. Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf Process. 2015;14(9):3441–3464.
  • Ekert AK. Quantum cryptography based on Bell’s theorem. Phys Rev Lett. 1991;67(6):661–663.
  • Wen X, Liu Y, Zhou N. Secure quantum telephone. Opt Commun. 2007;275(1):278–282.
  • Jain S, Muralidharan S, Panigrahi PK. Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys Lett. 2009;87(6):60008.
  • Nguyen BA. Quantum dialogue. Phys Lett A. 2004;328(1):6–10.
  • An NB. Secure dialogue without a prior key distribution. J Korean Phys Soc. 2005;47(4):562–567.
  • Shukla C, Kothari V, Banerjee A, et al. On the group-theoretic structure of a class of quantum dialogue protocols. Phys Lett A. 2013;377(7):518–527.
  • Banerjee A, Shukla C, Thapliyal K, et al. Asymmetric quantum dialogue in noisy environment. Quantum Inf Process. 2017;16(2):49.
  • Shukla C, Alam N, Pathak A. Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf Process. 2014;13(11):2391–2405.
  • Shukla C, Thapliyal K, Pathak A. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf Process. 2017; 16, 295.
  • Banerjee A, Thapliyal K, Shukla C, et al. Quantum conference; 2017. arXiv preprint arXiv:170200389.
  • Thapliyal K, Sharma RD, Pathak A. Protocols for quantum binary voting. Int J Quantum Inform. 2016:15:1750007.
  • Sharma RD, Thapliyal K, Pathak A. Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf Process. 2017;16, 169.
  • Thapliyal K, Sharma RD, Pathak A. Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment; 2016. arXiv preprint arXiv:160800101.
  • Sharma V, Thapliyal K, Pathak A, et al. A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf Process. 2016;15(11):4681–4710.
  • Acin A, Gisin N, Masanes L. From Bell’s theorem to secure quantum key distribution. Phys Rev Lett. 2006;97(12):120405.
  • Daido H, Nishiuchi M, Pirozhkov AS. Review of laser-driven ion sources and their applications. Rep Prog Phys. 2012;75(5):056401.
  • Montross CS, Wei T, Ye L, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review. Int J Fatigue. 2002;24(10):1021–1036.
  • Peyre P, Fabbro R. Laser shock processing: a review of the physics and applications. Opt Quantum Electron. 1995;27(12):1213–1229.
  • Rusak D, Castle B, Smith B, et al. Fundamentals and applications of laser-induced breakdown spectroscopy. Crit Rev Anal Chem. 1997;27(4):257–290.
  • Lee WB, Wu J, Lee YI, et al. Recent applications of laser-induced breakdown spectrometry: a review of material approaches. Appl Spectrosc Rev. 2004;39(1):27–97.
  • Hahn DW, Omenetto N. Laser-induced breakdown spectroscopy (libs), Part ii: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc. 2012;66(4):347–419.
  • Harmon RS, Russo RE, Hark RR. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: a comprehensive review. Spectrochim Acta Part B. 2013;87:11–26.
  • Michel AP. Review: applications of single-shot laser-induced breakdown spectroscopy. Spectrochim Acta Part B. 2010;65(3):185–191.
  • Radziemski LJ. Review of selected analytical applications of laser plasmas and laser ablation, 1987–1994. Microchem J. 1994;50(3):218–234.
  • Tognoni E, Palleschi V, Corsi M, et al. Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim Acta Part B. 2002;57(7):1115–1130.
  • Bass LS, Treat MR. Laser tissue welding: a comprehensive review of current and future. Lasers Surg Med. 1995;17(4):315–349.
  • Black DL, McQuay MQ, Bonin MP. Laser-based techniques for particle-size measurement: a review of sizing methods and their industrial applications. Prog Energy Combust Sci. 1996;22(3):267–306.
  • Schwarz F, Aoki A, Becker J, et al. Laser application in non-surgical periodontal therapy: a systematic review. J Clin Periodontol. 2008;35(s8):29–44.
  • Castellini P, Revel G, Tomasini E. Laser doppler vibrometry: a review of advances and applications. Shock Vib Dig. 1998;30(6):443–456.
  • Bagger C, Olsen FO. Review of laser hybrid welding. J Laser Appl. 2005;17(1):2–14.
  • Perkampus HH, Grinter HC, Threlfall T. Uv-vis spectroscopy and its applications. Berlin, Heidelberg: Springer; 1992.
  • Gaft M, Reisfeld R, Panczer G. Modern luminescence spectroscopy of minerals and materials. New York: Springer; 2015.
  • Smith BC. Fourier transform infrared spectroscopy. Boca Raton (FL): CRC; 1996.
  • Movasaghi Z, Rehman S, ur Rehman DI. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43(2):134–179.
  • Chastain J, King RC, Moulder J. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Eden Prairie (MN): Physical Electronics; 1995.
  • Van Grieken R, Markowicz A. Handbook of X-ray spectrometry. CRC Press; 2001.
  • Smith E, Dent G. Modern Raman spectroscopy: a practical approach. Chichester: Wiley; 2013.
  • Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53(19):4756–4795.
  • Yano T, Kawata S. Tip-enhanced Raman spectroscopy (ters) for nanoscale imaging and analysis. In: Frontiers of surface-enhanced Raman scattering: single nanoparticles and single cells. Wiley Online Library; 2014. p. 139–161.
  • Tolles WM, Nibler J, McDonald J, et al. A review of the theory and application of coherent anti-stokes Raman spectroscopy (cars). Appl Spectrosc. 1977;31(4):253–271.
  • Amer MS. Raman spectroscopy, fullerenes and nanotechnology. Cambridge: Royal Society of Chemistry; 2010.
  • Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013;8(4):235–246.
  • Jorio A. Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology. ISRN Nanotechnol. 2012;2012. Article ID. 234216.
  • Souza Filho A, Jorio A, Samsonidze GG, et al. Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnology. 2003;14(10):1130–1139.
  • Singla N, Tripathi A, Rana M, et al. “Turn on/off” proton transfer based fluorescent sensor for selective detection of environmentally hazardous metal ions (Zn2+, Pb2+) in aqueous media. J Lumin. 2015;165:46–55.
  • Ghannoum A, Norris RC, Iyer K, et al. Optical characterization of commercial lithiated graphite battery electrodes and in situ fiber optic evanescent wave spectroscopy. ACS Appl Mater Interfaces. 2016;8(29):18763–18769.
  • Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–687.
  • Bottka N, Gaskill D, Sillmon R, et al. Modulation spectroscopy as a tool for electronic material characterization. J Electron Mater. 1988;17(2):161–170.
  • de Araújo CB, Gomes AS, Boudebs G. Techniques for nonlinear optical characterization of materials: a review. Rep Prog Phys. 2016;79(3):036401.
  • Dicke RH, Peebles PJE, Roll PG, et al. Cosmic black-body radiation. Astrophys J. 1965;142:414–419.
  • Cooper MA. Optical biosensors in drug discovery. Nat Rev Drug Discovery. 2002;1(7):515–528.
  • Fringeli UP. In situ infrared attenuated total reflection (ir atr) spectroscopy: a complementary analytical tool for drug design and drug delivery. CHIMIA Int J Chem. 1992;46(5):200–214.
  • Arridge SR. Optical tomography in medical imaging. Inverse Probl. 1999;15(2):R41.
  • Tuchin VV. Optical clearing of tissues and blood. Bellingham (WA): SPIE Press; 2006.
  • Tuchin VV. Tissue optics: light scattering methods and instruments for medical diagnosis. Vol. 13. Bellingham (WA): SPIE Press; 2007.
  • Boas DA, Gaudette T, Strangman G, et al. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage. 2001;13(1):76–90.
  • Bushberg JT, Boone JM. The essential physics of medical imaging. Philadelphia: Lippincott Williams & Wilkins; 2011.
  • Katori H, Ido T, Isoya Y, et al. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys Rev Lett. 1999;82(6):1116–1119.
  • McKay D, Jervis D, Fine D, et al. Low-temperature high-density magneto-optical trapping of potassium using the open 4 S→5 P transition at 405 nm. Phys Rev A. 2011;84(6):063420.
  • Drewsen M, Laurent P, Nadir A, et al. Investigation of sub-doppler cooling effects in a cesium magneto-optical trap. Appl Phys B Lasers Opt. 1994;59(3):283–298.
  • Anderson MH, Ensher JR, Matthews MR, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science. 1995;269(5221):198–201.
  • Myatt C, Burt E, Ghrist R, et al. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys Rev Lett. 1997;78(4):586–589.
  • Liu C, Dutton Z, Behroozi CH, et al. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature. 2001;409(6819):490–493.
  • Dutton Z, Ginsberg NS, Slowe C, et al. The art of taming light: ultra-slow and stopped light. Europhys News. 2004;35(2):33–39.
  • Krauss TF. Why do we need slow light? Nat Photonics. 2008;2(8):448–450.
  • Lukin M, Imamoğlu A. Nonlinear optics and quantum entanglement of ultraslow single photons. Phys Rev Lett. 2000;84(7):1419–1422.
  • Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science. 2001;292(5514):77–79.
  • Smith DR, Pendry JB, Wiltshire MC. Metamaterials and negative refractive index. Science. 2004;305(5685):788–792.
  • Ramakrishna SA. Physics of negative refractive index materials. Rep Prog Phys. 2005;68(2):449–521.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.