158
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analytical and numerical solutions of the telegraph equation using the Atangana–Caputo fractional order derivative

Pages 695-712 | Received 15 Apr 2017, Accepted 03 Nov 2017, Published online: 21 Nov 2017

References

  • Oldham KB, Spanier J. The fractional calculus. New York (NY): Academic Press; 1974.
  • Kumar S, Kumar A, Baleanu D. Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger’s equations arise in propagation of shallow water waves. Nonlinear Dyn. 2016;1:1–17.
  • Luchko Y. A new fractional calculus model for the two-dimensional anomalous diffusion and its analysis. Math Model Nat Pheno. 2016;11(3):1–17.
  • Nadzharyan TA, Sorokin VV, Stepanov GV, et al. A fractional calculus approach to modeling rheological behavior of soft magnetic elastomers. Polymer. 2016;92:179–188.
  • Vosika ZB, Lazovic GM, Misevic GN, et al. Fractional calculus model of electrical impedance applied to human skin. PloS One. 2013;8(4):1–15.
  • Atangana A, Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstract Appl Anal. 2013;2013:1–16.
  • Caputo M, Fabrizio M. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015;1(2):73–85.
  • Atangana A, Alkahtani BST. Analysis of the Keller-Segel model with a fractional derivative without singular kernel. Entropy. 2015;17(6):4439–4453.
  • Caputo M, Fabrizio M. Applications of new time and spatial fractional derivatives with exponential kernels. Progr Fract Differ Appl. 2016;2:1–11.
  • Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci. 2016;20(2):763–769.
  • Gómez-Aguilar JF. Irving-Mullineux oscillator via fractional derivatives with Mittag-Leffler kernel. Chaos Solitons Fractals. 2017;95:179–186.
  • Algahtani OJJ. Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solitons Fractals. 2016;89:552–559.
  • Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos Solitons Fractals. 2016;89:447–454.
  • Gómez Aguilar JF, Baleanu D. Solutions of the telegraph equations using a fractional calculus approach. Proc Romanian Acad Ser A. 2014;1(15):27–34.
  • GadElkarim JJ, Magin RL, Meerschaert MM, et al. Fractional order generalization of anomalous diffusion as a multidimensional extension of the transmission line equation. IEEE J Emerg Sel Top Circuits Syst. 2013;3(3):432–441.
  • Fino AZ, Ibrahim H. Analytical solution for a generalized space-time fractional telegraph equation. Math Methods Appl Sci. 2013;36(14):1813–1824.
  • Alawad FA, Yousif EA, Arbab AI. A new technique of Laplace variational iteration method for solving space-time fractional telegraph equations. Int J Differ Equ. 2013;1:1–16.
  • Asgari M, Ezzati R, Allahviranloo T. Numerical solution of time-fractional order telegraph equation by Bernstein polynomials operational matrices. Math Prob Eng. 2016;1:1–15.
  • Cveticanin SM, Zorica D, Rapaic MR. Generalized time-fractional telegrapher’s equation in transmission line modeling. Nonlinear Dyn. 2017;1:1–20.
  • Mamchuev MO. Boundary value problem for the time-fractional telegraph equation with Caputo derivatives. ArXiv preprint arXiv:1610.04912, 2016.
  • Saadatmandi A, Mohabbati M. Numerical solution of fractional telegraph equation via the tau method. Math Rep. 2015;17:155–166.
  • Dubey RS, Goswami P, Belgacem FBM. Generalized time-fractional telegraph equation analytical solution by Sumudu and Fourier transforms. J Fract Calculus Appl. 2014;5(2):52–58.
  • Belgacem FBM, Karaballi AA, Kalla SL. Analytical investigations of the Sumudu transform and applications to integral production equations. Math Prob Eng. 2003;2003(3):103–118.
  • Povstenko Y. Thermoelasticity based on fractional telegraph equation. In: Povstenko Y, editor. Fractional thermoelasticity. Springer; 2015. p. 191–210.
  • Alkahtani BS, Gulati V, Goswami P. On the solution of generalized space time fractional telegraph equation. Math Prob Eng. 2015;1:1–7.
  • Suleman M, Elzaki TM, Rahman JU, et al. A novel technique to solve space and time fractional telegraph equation. J Comput Theor Nanosci. 2016;13(3):1536–1545.
  • Mescia L, Bia P, Caratelli D. Fractional derivative based FDTD modeling of transient wave propagation in Havriliak-Negami media. IEEE Trans Microw Theory Techn. 2014;62:1920–1929.
  • Caratelli D, Mescia L, Bia P, et al. Fractional-calculus-based FDTD algorithm for ultrawideband electromagnetic characterization of arbitrary dispersive dielectric materials. IEEE Trans Antennas Propag. Forthcoming 2016. DOI:10.1109/TAP.2016.2578322
  • Bia P, Caratelli D, Mescia L, et al. A novel FDTD formulation based on fractional derivatives for dispersive Havriliak-Negami media. Signal Process. 2015;107:312–318.
  • Mescia L, Bia P, Caratelli D. Fractional-calculus-based FDTD method for solving pulse propagation problems. In: Electromagnetics in Advanced Applications (ICEAA), 2015 International Conference IEEE. Turin, Italy; 2015. p. 460–463.
  • Pramukkul P, Svenkeson A, Grigolini P, et al. Complexity and the fractional calculus. Adv Math Phys. 2013; Article ID 498789, 7 p. DOI:10.1155/2013/498789
  • Failla R, Grigolini P, Ignaccolo M, et al. Random growth of interfaces as a subordinated process. Phys Rev E. 2004;70(1):1–14.
  • Sabzikar F, Meerschaert MM, Chen J. Tempered fractional calculus. J Comput Phys. 2015;293:14–28.
  • Meerschaert MM, Zhang Y, Baeumer B. Tempered anomalous diffusion in heterogeneous systems. Geophys Res Lett. 2008;35(17):1–5.
  • Cartea A, del-Castillo-Negrete D. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys Rev E. 2007;76(4):1–12.
  • Benson DA, Wheatcraft SW, Meerschaert MM. Application of a fractional advection-dispersion equation. Water Resour Res. 2000;36(6):1403–1412.
  • Hanyga A, Rok VE. Wave propagation in micro-heterogeneous porous media: a model based on an integro-differential wave equation. J Acoust Soc Am. 2000;107:2965–2972.
  • Garnier J, Solna K. Effective fractional acoustic wave equations in one-dimensional random multiscale media. J Acous Soc Amer. 2010;127(1):62–72.
  • Atangana A. Derivative with two fractional orders: a new avenue of investigation toward revolution in fractional calculus. Eur Phys J Plus. 2016;131(10):1–13.
  • Liu Y, Fang Z, Li H, et al. A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl Math Comput. 2014;243:703–717.
  • Gómez-Aguilar JF, Rosales-García JJ, Bernal-Alvarado JJ, et al. Fractional mechanical oscillators. Rev Mex Fís. 2012;58(4):348–352.
  • Van Groesen E, Mainardi F. Energy propagation in dissipative systems. Part I: centrovelocity for linear systems. Wave Motion. 1989;11:201–209.
  • Van Groesen E, Mainardi F. Balance laws and centrovelocity in dissipative systems. J Math Phys. 1990;31:2136–2140.
  • Luchko Y. Fractional wave equation and damped waves. J Math Phys. 2013;54:1–17.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.