152
Views
0
CrossRef citations to date
0
Altmetric
Invited Review Article

Analysis of some periodic structures of microwave tubes: part II: analysis of disc-loaded fast-wave circular waveguide structures for gyro-travelling-wave tubes

&
Pages 1465-1500 | Received 22 Jan 2018, Accepted 25 Feb 2018, Published online: 26 Mar 2018

References

  • Kesari V, Basu BN. Analysis of some periodic structures of microwave tubes: part I: analysis of helical slow-wave structures of traveling-wave tubes. J Electromagn Waves Appl. 2017;31(1):1–37.10.1080/09205071.2016.1276862
  • Basu BN. Electromagnetic theory and applications in beam-wave electronics. Singapore: World Scientific; 1996.10.1142/2804
  • Jain PK, Basu BN. Electromagnetic wave propagation through helical structures. In: Singh ON, Lakhtakia A, editors. Chapter 10, Electromagnetic fields in unconventional materials and structures. New York (NY): Wiley; 2000; p. 433–455.
  • Kravchenko NP, Loshakov LN, Pchelnikov YN. Computation of dispersion characteristics of a spiral placed in a screen with longitudinal ribs. RadioEng Electron Phys. 1976;21:33–39.
  • Sinha AK, Basu BN. Dispersion-shaping in a helix slow-wave structure using metal fins. J Instn Electron Telecomm Eng. 1980;26:318–320.
  • Nagesh SR, Ghosh S, Jain PK, et al. A simple model for anisotropic loading of a vane-loaded helix for broad-band travelling-wave tubes. J Insnt Electron Telecomm Eng. 1993;39:387–390.
  • Kumar L, Raju RS, Joshi SN, et al. Modeling of a vane-loaded helical slow-wave structure for broad-band traveling-wave tubes. IEEE Trans Electron Devices. 1989;36:1991–1999.10.1109/16.34282
  • Jung SS, Baik CW, Han ST, et al. Wide-band semivane and heavily dielectric loaded helix traveling-wave tubes. IEEE Trans Plasma Sci. 2002;30:1009–1016.10.1109/TPS.2002.801660
  • Kesari V. Analysis of disc-loaded circular waveguides for wideband gyro-TWTs. Germany: Lambert Academic Publishing AG & Co.; 2009.
  • Benford J, Swegel J, editors. High power microwaves. Boston (MA): Artech House; 1992.
  • Gaponov-Grekhov AV, Granatstein VL, editors. Application of high power microwaves. Boston (MA): Artech House; 1994.
  • Singh G, Ravi Chandra SMS, Bhaskar PV, et al. Analysis of an azimuthally periodic vane-loaded cylindrical waveguide for a gyro-travelling-wave tube. Int J Electron. 1999;86:1463–1479.10.1080/002072199132554
  • Agrawal M, Singh G, Jain PK, et al. Analysis of a tapered vane loaded broad-band gyro-TWT. IEEE Trans Plasma Sci. 2001;29:439–444.10.1109/27.928941
  • Piosczyk B, Braz O, Dammertz G, et al. A 1.5-MW, 140-GHz, TE28,16-coaxial cavity gyrotron. IEEE TransPlasma Sci. 1997; 25(3): 460–469.10.1109/27.597261
  • Singh K, Jain PK, Basu BN. Analysis of a corrugated coaxial waveguide resonator for mode rarefaction in a gyrotron. IEEE Trans Plasma Sci. 2005;33(3):1024–1030.10.1109/TPS.2005.848604
  • Choe JY, Uhm HS. Theory of gyrotron amplifiers in disc or helix-loaded waveguides. Int J Electron. 1982;53:729–741.10.1080/00207218208901564
  • Kesari V, Jain PK, Basu BN. Approaches to the analysis of a disc loaded cylindrical waveguide for potential application in wideband gyro-TWTs. IEEE Trans Plasma Sci. 2004;32(5):2144–2151.10.1109/TPS.2004.835518
  • Kesari V, Jain PK, Basu BN. Analysis of a circular waveguide loaded with thick annular metal discs for wideband gyro-TWTs. IEEE Trans Plasma Sci. 2005;33(4):1358–1365.10.1109/TPS.2005.852393
  • Kesari V, Jain PK, Basu BN. Analysis of a disc-loaded circular waveguide for interaction impedance of a gyrotron amplifier. Int J Infrared Millimeter Waves. 2005;26(8):1093–1110.10.1007/s10762-005-7270-9
  • Kesari V, Jain PK, Basu BN. Modal analysis of a corrugated circular waveguide for wideband potential in gyro-devices. Int J Microwave Opt Technol. 2007;2(2):147–152.
  • Kesari V, Keshari JP. Interwoven-disc-loaded circular waveguide for a wideband gyro-traveling-wave tube. IEEE Trans Plasma Sci. 2013;41(3):456–460.10.1109/TPS.2013.2241458
  • Kesari V, Keshari JP. Propagation characteristics of a variant of disc-loaded circular waveguide. Prog Electromagn Res M. 2012;26:23–37.10.2528/PIERM12052810
  • Kesari V, Keshari JP. Analysis of a circular waveguide loaded with dielectric and metal discs. Prog Electromagn Res. 2011;111:253–269.10.2528/PIER10110207
  • Kesari V, Jain PK, Basu BN. Modeling of axially periodic circular waveguide with combined dielectric and metal loading. J Phys D Appl Phys, IoP. 2005;38:3523–3529.10.1088/0022-3727/38/18/030
  • Kesari V, Jain PK, Basu BN. Parameters to define the electron beam trajectory of a double-tapered disc-loaded wideband gyro-TWT in profiled magnetic field. Int J Infrared Millimeter Waves. 2007;28(6):443–449.10.1007/s10762-007-9223-y
  • Kesari V, Jain PK, Basu BN. Analysis of a tapered disc-loaded waveguide for a wideband gyro-TWT. IEEE Trans Plasma Sci. 2006;34(3):541–546.10.1109/TPS.2006.875767
  • Kesari V, Jain PK, Basu BN. Exploration of a double-tapered disc-loaded circular waveguide for a wideband gyro-TWT. IEEE Electron Dev Lett. 2006;27(3):194–197.10.1109/LED.2005.864176
  • Kesari V, Basu BN. Analysis of beam and magnetic field parameter sensitivity of a disc-loaded wideband gyro-TWT. IEEE Trans Plasma Sci. 2013;41(5):1557–1561.10.1109/TPS.2013.2256434
  • Fliflet AW. Linear and non-linear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes. Int J Electron. 1986;61:1049–1080.10.1080/00207218608920939
  • Thumm MK, Kasparek W. Passive high-power microwave components. IEEE Trans Plasma Sci. 2002;30(3):755–786.10.1109/TPS.2002.801653
  • Symons RS, Jory HR. Cyclotron resonance devices. Adv Electron Phys. 1986;55:1–75.
  • Chu KR. The electron cyclotron maser. Rev Mod Phys. 2004;76:489–540.10.1103/RevModPhys.76.489
  • Smith L, Carpentier M, editors. The microwave engineering handbook: microwave components. London: Chapman and Hall; 1993.
  • Shrivastava UA. Small-signal theories of harmonic gyrotron and peniotron amplifiers and oscillators [PhD thesis]. Utah (UT): University of Utah; 1985.
  • Lau YY, Chu KR, Barnett LR, et al. Gyrotron traveling wave amplifier: II. Effect of velocity spread and wall resistivity on the gain and bandwidth of the gyro-TWT. Int J Infrared Millimeter Waves, 1981;2:395–413.10.1007/BF01007409
  • Watkins DA. Topics in electromagnetic theory. New York (NY): John Wiley; 1958.
  • Sangster AJ. Small-signal analysis of the travelling-wave gyrotron using Pierce parameters. Proc IEE. 1980;127:45–52.
  • Rao SJ, Jain PK, Basu BN. Broadbanding of gyro-TWT by dispersion shaping through dielectric loading. IEEE Trans Electron Dev. 1996;43:2290–2299.10.1109/16.544423
  • Rao SJ, Jain PK, Basu BN. Two-stage dielectric-loading for broadbanding a gyro-TWT. IEEE Electron Dev Lett. 1996;17:303–305.10.1109/55.496465
  • Chu KR, Lau YY, Barnett LR, et al. Theory of a wide-band distributed gyrotron traveling-wave amplifier. IEEE Trans Electron Dev. 1981;28:866–871.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.