255
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Metamaterial-inspired rotation sensor based on complementary single split-ring resonator (CSSRR)

, , , , &
Pages 1664-1674 | Received 26 Jun 2017, Accepted 09 Apr 2018, Published online: 06 May 2018

References

  • Bunker G , Stern EA . Experimental study of multiple scattering in X-ray-absorption near-edge structure. Phys Rev Lett. 1984;52:1990–1993.10.1103/PhysRevLett.52.1990
  • Vvedensky DD , Pendry JB . Experimental study of multiple scattering in X-ray absorption near-edge structure. Phys Rev Lett. 1985;54:2725.10.1103/PhysRevLett.54.2725
  • Verellen N , Van Dorpe P , Huang C , et al . Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011;11:391–397.10.1021/nl102991v
  • Papasimakis N , Fu YH , Fedotov VA , et al . Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency. Appl Phys Lett. 2009; 94:211902-1–211902-3.
  • Li HM , Liu SB , Liu SY , et al . Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response. Appl Phys Lett. 2015; 106:083511-1–083511-4.
  • Zhang S , Ge DB , Wei B . Numerical study of a new type of tunable Srr metamaterial structure. J Electromagn Waves Appl. 2008;22:1819–1828.10.1163/156939308786375127
  • Liu N , Mesch M , Weiss T , et al . Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 2010;10:2342–2348.10.1021/nl9041033
  • Liu N , Langguth L , Weiss T , et al . Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater. 2009;8:758–762.10.1038/nmat2495
  • Yan HG , Li XS , Chandra B , et al . Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 2012;7:330–334.10.1038/nnano.2012.59
  • Silveirinha M , Engheta N . Tunneling of electromagnetic energy through subwavelength channels and bends using ε -near-zero materials. Phys Rev Lett. 2006; 97:157403-1–157403-4.10.1103/PhysRevLett.97.157403
  • Yu NF , Capasso F . Flat optics with designer metasurfaces. Nat Mater. 2014;13:139–150.10.1038/nmat3839
  • Lee Y , Tse S , Hao Y , et al . A compact microstrip antenna with improved bandwidth using complementary split-ring resonator (CSRR) loading. In: 2007 IEEE Antennas and Propagation Society International Symposium; Honolulu (HI);2007. p. 5431–5434.
  • Yoo YJ , Hwang JS , Lee YP . Flexible perfect metamaterial absorbers for electromagnetic wave. J Electromagn Waves Appl. 2017;31:663–715.10.1080/09205071.2017.1312557
  • Karthikeyan SS , Kshetrimayum RS . Notched UWB bandpass filter using complementary single split ring resonator. IEICE Electron Exp. 2010;7:1290–1295.10.1587/elex.7.1290
  • Sabah C , Dincer F , Karaaslan M , et al . Biosensor applications of chiral metamaterials for marrowbone temperature sensing. J Electromagn Waves Appl. 2015;29:2393–2403.10.1080/09205071.2015.1084894
  • Vollmer F , Braun D , Libchaber A , et al . Protein detection by optical shift of a resonant microcavity. Appl Phys Lett. 2002;80:4057–4059.10.1063/1.1482797
  • Marques R , Mesa F , Martel J , et al . Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design – theory and experiments. IEEE Trans Antennas Propag. 2003;51:2572–2581.10.1109/TAP.2003.817562
  • Chen CY , Un IW , Tai NH , et al . Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Opt Exp. 2009;17:15372–15380.10.1364/OE.17.015372
  • Li ZP , Huang HY , Bao JF . X-band low phase noise push–push oscillator utilizing high- Q differential transmission line loaded with multiple split-ring resonator. J Electromagn Waves Appl. 2016;30:124–139.10.1080/09205071.2015.1096839
  • Yang JJ , Huang M , Tang H , et al . Metamaterial sensors. Int J Antennas Propag. 2013;2013: 637270. DOI:10.1155/2013/637270
  • O’Hara JF , Singh R , Brener I , et al . Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Exp. 2008;16:1786–1795.10.1364/OE.16.001786
  • Yang JJ , Huang M , Xiao Z , et al . Simulation and analysis of asymmetric metamaterial resonator-assisted microwave sensor. Mod Phys Lett B. 2010;24:1207–1215.10.1142/S0217984910023232
  • Cheng YZ , Mao XS , Wu CJ , et al . Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Opt Mater. 2016;53:195–200.10.1016/j.optmat.2016.01.053
  • Patel SK , Argyropoulos C . Enhanced bandwidth and gain of compact microstrip antennas loaded with multiple corrugated split ring resonators. J Electromagn Waves Appl. 2016;30:945–961.10.1080/09205071.2016.1167633
  • Ozbey B , Demir HV , Kurc O , et al . Wireless measurement of elastic and plastic deformation by a metamaterial-based sensor. Sensors. 2014;14:19609–19621.10.3390/s141019609
  • Wu W , Ren MX , Pi B , et al . Scaffold metamaterial and its application as strain sensor. Appl Phys Lett. 2015; 107:091104-1–091104-3.
  • Yoon J , Zhou M , Badsha MA , et al . Broadband epsilon-near-zero perfect absorption in the near-infrared. Sci Rep. 2014;5:12788.
  • Raj A , Jha AK , Ansari MAH , et al . Metamaterial-inspired microwave sensor for measurement of complex permittivity of materials. Microwave Opt Technol Lett. 2016;58:2577–2581.10.1002/mop.v58.11
  • Powell AW , Coles DM , Taylor RA , et al . Plasmonic gas sensing using nanocube patch antennas. Adv Opt Mater. 2016;4:634–642.10.1002/adom.v4.4
  • Huang JQ , Li BY , Chen WH . A CMOS MEMS humidity sensor enhanced by a capacitive coupling structure. Micromachines. 2016;7:74.10.3390/mi7050074
  • Ebrahimi A , Withayachumnankul W , Al-Sarawi S , et al . High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens J. 2014;14:1345–1351.10.1109/JSEN.2013.2295312
  • Zeng HY , Wang GM , Yu ZW , et al . Miniaturization of branch-line coupler using composite right/left-handed transmission lines with novel meander-shaped-slots CSSRR. Radioengineering. 2012;21:606–610.
  • Horestani AK , Naqui J , Shaterian Z , et al . Two-dimensional alignment and displacement sensor based on movable broadside-coupled split ring resonators. Sens Actuators A: Phys. 2014;210:18–24.10.1016/j.sna.2014.01.030
  • Horestani AK , Abbott D , Fumeaux C . Rotation sensor based on horn-shaped split ring resonator. IEEE Sens J. 2013;13:3014–3015.10.1109/JSEN.2013.2264804
  • Zheng LR , Sun XY , Xu H , et al . Strain sensitivity of electric-magnetic coupling in flexible terahertz metamaterials. Plasmonics. 2015;10:1331–1335.10.1007/s11468-015-9940-3
  • Ebrahimi A , Withayachumnankul W , Al-Sarawi SF , et al . Metamaterial-inspired rotation sensor with wide dynamic range. IEEE Sens J. 2014;14:2609–2614.10.1109/JSEN.2014.2313625
  • Horestani AK , Fumeaux C , Al-Sarawi SF , et al . Displacement sensor based on diamond-shaped tapered split ring resonator. IEEE Sens J. 2013;13:1153–1160.10.1109/JSEN.2012.2231065
  • Naqui J , Coromina J , Horestani AK , et al . Angular displacement and velocity sensors based on coplanar waveguides (CPWs) loaded with s-shaped split ring resonators (S-SRR). Sensors. 2015;15:9628–9650.10.3390/s150509628
  • Rohde UL , Newkirk DP . RF/microwave circuit design for wireless applications. New York (NY): John Wiley and Sons; 2013.
  • Aznar F , Gil M , Bonache J , et al . Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction. J Appl Phys. 2008;104:114501-1–114501-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.