216
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Design and simulation of a novel nano-plasmonic split-ring resonator filter

, &
Pages 1925-1938 | Received 09 Feb 2018, Accepted 14 May 2018, Published online: 08 Jun 2018

References

  • Maier SA. Plasmonics: fundamentals and applications. Bath: Springer; 2007.
  • Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nature Photon. 2010;4:83–91. doi: 10.1038/nphoton.2009.282
  • Cai W, Shin W, Fan S, et al. Elements for plasmonic nanocircuits with three-dimensional slot waveguides. Adv Mater. 2010;22:5120–5124. doi: 10.1002/adma.201001440
  • Choo H, Kim MK, Staffaroni M, et al. Nanofocusing in a metal–insulator–metal gap plasmon waveguide with a three-dimensional linear taper. Nature Photon. 2012;6:838–844. doi: 10.1038/nphoton.2012.277
  • Eshaghian A, Hodaei H, Bahadori M, et al. Transmission enhancement of sharply bent nanoplasmonic slot waveguides. J Opt Soc Amer B. 2014;31:458–463. doi: 10.1364/JOSAB.31.000458
  • Bahador M, Eshaghian A, Mehrany K. A circuit model for analysis of metal–insulator–metal plasmonic complementary split-ring resonators. J Lightwave Tech. 2014;32:2659–2665. doi: 10.1109/JLT.2014.2331325
  • Zand I, Bahramipanah M, Abrishamian MS, et al. Metal-insulator-metal nanoscale loop-stub structures. IEEE Photon J. 2012;4:2136–2142. doi: 10.1109/JPHOT.2012.2226569
  • Gong Y, Liu X, Wang L. High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings. Opt Lett. 2010;35(3):285–287. doi: 10.1364/OL.35.000285
  • Han Z, Liu L, Forsberg E. Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons. Opt Commun. 2006;259:690–695. doi: 10.1016/j.optcom.2005.09.034
  • Nguyen-Huu N, Lo Y. Tailoring the optical transmission spectra of double-layered compound metallic gratings. IEEE Photon J. 2013;5:2700108. doi: 10.1109/JPHOT.2013.2240290
  • Ren X, Ren K, Cai Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. App Opt. 2017;56:H1–H9. doi: 10.1364/AO.56.0000H1
  • Wang X, Wang P, Chen C, et al. Plasmonic racetrack resonator with high extinction ratio under critical coupling condition. J Appl Phys. 2010;107:124517-1–124517-4.
  • Chen Z, Chen J, Li Y, et al. Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides. IEEE Photon Technol Lett. 2012;24:1366–1368. doi: 10.1109/LPT.2012.2202283
  • Chen J, Li Y, Chen Z. Tunable resonances in the plasmonic split-ring resonator. IEEE Photon J. 2014;4800706.
  • Rafiee E, Emami F, Nozhat N. Coupling coefficient increment and free spectral range decrement by proper design of microring resonator parameters. Opt Eng. 2014;53:123108-1–123108-7. doi: 10.1117/1.OE.53.12.123108
  • Rafiee E, Emami F. Investigating the effects of structural parameters on the optical characteristics of add-drop filters. Optik (Stuttg). 2016;127:1690–1694. doi: 10.1016/j.ijleo.2015.10.232
  • Halpern R, Corn RM. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances. ACS Nano. 2013;7:1755–1762. doi: 10.1021/nn3058505
  • Janipour M, Karami MA, Sofiani R, et al. A novel adjustable plasmonic filter realization by split mode ring resonators. J Electro Anal App. 2013;5:405–414.
  • Lehr D, Dietrich K, Helgert C, et al. Plasmonic properties of aluminum nanorings generated by double patterning. Opt Lett. 2012;37:157–159. doi: 10.1364/OL.37.000157
  • Liu D. High sensitivity and large field enhancement of symmetry broken Au nanorings: effect of multipolar plasmon resonance and propagation. Opt Exp. 2009;17:2906–2917. doi: 10.1364/OE.17.002906
  • Liu SD, Yang Z, Liu RP, et al. Radiative damping suppressing and refractive index sensing with elliptical split nanorings. Appl Phys Lett. 2012;100:203119-1–20203119.
  • Xu H, Li H, Xiao G, et al. Tunable plasmon resonance in the nanobars and split ring resonator(SRR) composite structure. Opt Commun. 2016;377:70–73. doi: 10.1016/j.optcom.2016.05.023
  • Sun JZ, Zhang L, Gao F, et al. Switching terahertz waves with graphene-integrated split-ring resonator. Optik (Stuttg). 2016;127:8096–8102. doi: 10.1016/j.ijleo.2016.05.151
  • Wei Z, Zhang X, Zhong N, et al. Optical band-stop filter and multi-wavelength channel selector with plasmonic complementary aperture embedded in double-ring resonator. Photon Nanostruc. 2016;23:45–49. doi: 10.1016/j.photonics.2016.11.002
  • Wu C, Neuner B, Shvets G. Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B. 2011;84:075102-1–075102-7.
  • Ghasemi M, Choudhury PK. Nanostructured concentric gold ring resonator-based metasurface filter device. Optik (Stuttg). 2016;127:9932–9936. doi: 10.1016/j.ijleo.2016.07.048
  • Zhu Y, Hu X, Huang Y, et al. Fast and low-power all-optical tunable fano resonance in plasmonic microstructures. Adv Optical Mater. 2013;1:61–67. doi: 10.1002/adom.201200025
  • Guo CF, Sun T, Cao F, et al. Metallic nanostructures for light trapping in energy-harvesting devices. Light Sci Appl. 2014;3:e161. doi: 10.1038/lsa.2014.42
  • Baqir MA, Ghasemi M, Choudhury PK, et al. Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. JEMWA. 2015;29:2408–2419.
  • Ghasemi M, Choudhury PK, Baqir MA, et al. Metamaterial absorber comprising chromium–gold nanorods-based columnar thin films. J Nanophoton. 2017;11(4):043505-1–043505-10. doi: 10.1117/1.JNP.11.043505
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE PTL. 2017;29(18):1548–1551. doi: 10.1109/LPT.2017.2735453
  • Wang TB, Wen X-W, Yin C-P, et al. The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Exp. 2009;17(26):24096–24101. doi: 10.1364/OE.17.024096
  • Han Z, Forsberg E, He S. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett. 2007;19(2):91–93. doi: 10.1109/LPT.2006.889036
  • Zentgraf T, Meyrath TP, Seidel A, et al. Babinet’s principle for optical frequency metamaterials and nanoantennas. Phys Rev B, Condens Matter. 2007;76:033407-1–033407-4. doi: 10.1103/PhysRevB.76.033407
  • Nozhat N, Granpayeh N. Ultra-compact metal-insulator-metal plasmonic power splitter at 1550nm wavelength. Photonics global conference (PGC); Singapore; 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.