483
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Recent advances in the design and development of radio frequency-based energy harvester for powering wireless sensors: a review

, , &
Pages 2110-2134 | Received 19 Dec 2017, Accepted 27 Jun 2018, Published online: 19 Jul 2018

References

  • Tentzeris MM, Georgiadis A, Roselli L. Energy harvesting and scavenging [scanning the issue]. Proc IEEE. 2014;102:1644–1648. doi: 10.1109/JPROC.2014.2361599
  • Kausar AZ, Reza AW, Saleh MU, et al. Energizing wireless sensor networks by energy harvesting systems: scopes, challenges and approaches. Renew Sustain Energy Rev. 2014;38:973–989. doi: 10.1016/j.rser.2014.07.035
  • Visser HJ, Vullers RJ. RF energy harvesting and transport for wireless sensor network applications: principles and requirements. Proc IEEE. 2013;101:1410–1423. doi: 10.1109/JPROC.2013.2250891
  • Shaikh FK, Zeadally S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew Sustain Energy Rev. 2016;55:1041–1054. doi: 10.1016/j.rser.2015.11.010
  • Jayakumar H, Lee K, Lee WS, et al. Powering the internet of things. Proceedings of the 2014 International Symposium on Low Power Electronics and Design, ISLPED ‘14; Aug 11–13; La Jolla, CA, USA. New York (NY): ACM; 2014. p. 375–380.
  • Babayo AA, Anisi MH, Ali I. A review on energy management schemes in energy harvesting wireless sensor networks. Renew Sustain Energy Rev. 2017;76:1176–1184. doi: 10.1016/j.rser.2017.03.124
  • Global Markets. Technologies and Devices for Energy Harvesting: EGY097A | BCC Research. Available from: https://www.bccresearch.com/market-research/energy-and-resources/energy-harvesting-markets-technology-devices-egy097a.html.
  • Tesla N. Experiments with alternate currents of high potential and high frequency. Book Tree. 2007.
  • Liu H. Maximizing efficiency of wireless power transfer with resonant Inductive Coupling. 2011.
  • Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances. Science. 2007;317:83–86. doi: 10.1126/science.1143254
  • Brown WC. The history of power transmission by radio waves. IEEE Trans Microw Theory Tech. 1984;32:1230–1242. doi: 10.1109/TMTT.1984.1132833
  • Shinohara N, Matsumoto H. Experimental study of large rectenna array for microwave energy transmission. IEEE Trans Microw Theory Tech. 1998;46:261–268. doi: 10.1109/22.661713
  • Brown WC. Experiments involving a microwave beam to power and position a helicopter. IEEE Trans Aerosp Electron Syst. 1969;AES-5: 692–702. doi: 10.1109/TAES.1969.309867
  • McSpadden JO, Mankins JC. Space solar power programs and microwave wireless power transmission technology. IEEE Microw Mag. 2002;3:46–57. doi: 10.1109/MMW.2002.1145675
  • Gubbi J, Buyya R, Marusic S, et al. Internet of things (IoT): A vision, architectural elements, and future directions. Future Gener Comput Syst. 2013;29:1645–1660. doi: 10.1016/j.future.2013.01.010
  • Kim S, Vyas R, Bito J, et al. Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proc IEEE. 2014;102:1649–1666. doi: 10.1109/JPROC.2014.2357031
  • Lu X, Wang P, Niyato D, et al. Wireless networks with RF energy harvesting: A contemporary survey. IEEE Commun Surv Tutor. 2015;17:757–789. doi: 10.1109/COMST.2014.2368999
  • Carvalho NB, Georgiadis A, Costanzo A, et al. Wireless power transmission: R&D activities within Europe. IEEE Trans Microw Theory Tech. 2014;62:1031–1045. doi: 10.1109/TMTT.2014.2303420
  • Soyata T, Copeland L, Heinzelman W. RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits Syst Mag. 2016; 16:22–57. doi: 10.1109/MCAS.2015.2510198
  • Beikzadeh B. Design and implementation of a micro scale radio frequency energy harvester. EURECA. 2013;4:75–76.
  • Shrestha S, Lee SR, Choi D-Y. A new fractal-based miniaturized dual band patch antenna for RF energy harvesting. Int J Antennas Propag. 2014;2014:1–9. doi: 10.1155/2014/805052
  • Sun H, Guo Y-x, He M, et al. Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wirel Propag Lett. 2012;11:929–932. doi: 10.1109/LAWP.2012.2212232
  • Assimonis SD, Daskalakis S-N, Bletsas A. Efficient RF harvesting for low-power input with low-cost lossy substrate rectenna grid. RFID technol. Appl. Conf. RFID-TA. IEEE; 2014; p. 1–6.
  • Sun H, Guo Y-X, Wang Z. 60-GHz circularly polarized U-slot patch antenna array on LTCC. IEEE Trans Antennas Propag. 2013;61:430–435. doi: 10.1109/TAP.2012.2214018
  • Pradhan S, Noh LS-K, Choi D-Y, et al. Comparative study of rectenna for electromagnetic energy harvesting. Int J Control Autom. 2014;7:101–112. doi: 10.14257/ijca.2014.7.3.11
  • Shrestha S, Noh S-K, Choi D-Y. Comparative study of antenna designs for RF energy harvesting. Int J Antennas Propag. 2013;2013:1–10. doi: 10.1155/2013/385260
  • Pinuela M, Mitcheson PD, Lucyszyn S. Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Tech. 2013;61:2715–2726. doi: 10.1109/TMTT.2013.2262687
  • Sun H, Guo Y, He M, et al. A dual-band rectenna using broadband yagi antenna array for ambient RF power harvesting. IEEE Antennas Wirel Propag Lett. 2013;12:918–921. doi: 10.1109/LAWP.2013.2272873
  • Bakkali A, Pelegrí-Sebastiá J, Sogorb T, et al. A dual-band antenna for RF energy harvesting systems in wireless sensor networks. J Sens 2016;2016:1–8. doi: 10.1155/2016/5725836
  • Zhang J-W, Huang Y, Cao P. An investigation of wideband rectennas for wireless energy harvesting. Wirel Eng Technol. 2014;5:107. doi: 10.4236/wet.2014.54012
  • Chen Z, Guo B, Yang Y, et al. Metamaterials-based enhanced energy harvesting: A review. Phys B Condens Matter. 2014;438:1–8. doi: 10.1016/j.physb.2013.12.040
  • Agrawal S, Pandey SK, Singh J, et al. Realization of efficient RF energy harvesting circuits employing different matching technique. Qual. Electron. Des. ISQED 2014 15th Int. Symp. IEEE; 2014 p. 754–761.
  • Felini C, Merenda M, Della Corte FG. Dynamic impedance matching network for RF energy harvesting systems. RFID technol. Appl. Conf. RFID-TA 2014 IEEE; 2014; p. 86–90.
  • Hameed Z, Moez K. Design of impedance matching circuits for RF energy harvesting systems. Microelectron J 2017;62:49–56. doi: 10.1016/j.mejo.2017.02.004
  • Shen S, Murch RD. Impedance matching for compact multiple antenna systems in random RF fields. IEEE Trans Antennas Propag. 2016;64:820–825. doi: 10.1109/TAP.2015.2510006
  • Zeng M, Andrenko AS, Tan H-Z, et al. Fractal loop antenna with novel impedance matching for RF energy harvesting. Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC); 2016 May 17-21; Shenzhen, China, IEEE.
  • Chouhan SS, Halonen K. Voltage multiplier circuit for UHF RF to DC conversion for RFID applications. NORCHIP, IEEE; 2014 Oct 27–28; Tampere, Finland, IEEE.
  • Chouhan SS, Nurmi M, Halonen K. Efficiency enhanced voltage multiplier circuit for RF energy harvesting. Microelectron J. 2016;48:95–102. doi: 10.1016/j.mejo.2015.11.012
  • Yao C-Y, Hsia W-C. A–$21.2 $-dBm dual-channel UHF passive CMOS RFID Tag design. IEEE Trans Circuits Syst Regul Pap. 2014;61:1269–1279. doi: 10.1109/TCSI.2013.2285911
  • Hemour S, Zhao Y, Lorenz CHP, et al. Towards low-power high-efficiency RF and microwave energy harvesting. IEEE Trans Microw Theory Tech. 2014;62:965–976. doi: 10.1109/TMTT.2014.2305134
  • Hwang Y-S, Lei C-C, Yang Y-W, et al. A 13.56-MHz low-voltage and low-control-loss RF-DC rectifier utilizing a reducing reverse loss technique. IEEE Trans Power Electron. 2014;29:6544–6554. doi: 10.1109/TPEL.2014.2304517
  • Shokrani MR, Khoddam M, Hamidon MNB, et al. An RF energy harvester system using UHF micropower CMOS rectifier based on a diode connected CMOS transistor. Sci World J. 2014;2014:1–11. doi: 10.1155/2014/963709
  • Dai H, Lu Y, Law M-K, et al. A review and design of the on-chip rectifiers for RF energy harvesting. IEEE International Wireless Symposium (IWS 2015); 2015 Mar 30–Apr 1; Shenzhen, China, IEEE.
  • Hameed Z, Moez K. A 3.2 V–15 dBm adaptive threshold-voltage compensated RF energy harvester in 130 nm CMOS. IEEE Trans Circuits Syst Regul Pap. 2015;62:948–956. doi: 10.1109/TCSI.2015.2413153
  • Cavalheiro D, Moll F, Valtchev S. Tunnel FET device characteristics for RF energy harvesting passive rectifiers. New Circuits Syst. Conf. NEWCAS 2015 IEEE 13th Int. IEEE; 2015; p. 1–4.
  • Li X, Heo UD, Ma K, et al. RF-powered systems using steep-slope devices. New circuits syst. Conf. NEWCAS 2014 IEEE 12th Int. IEEE; 2014; p. 73–76.
  • Cavalheiro D, Moll F, Valtchev S. Novel UHF passive rectifier with tunnel FET devices. VLSI ISVLSI 2015 IEEE Comput. Soc. Annu. Symp. IEEE; 2015. p. 309–314.
  • Liu H, Li X, Vaddi R, et al. Tunnel FET RF rectifier design for energy harvesting applications. IEEE J Emerg Sel Top Circuits Syst. 2014;4:400–411. doi: 10.1109/JETCAS.2014.2361068
  • Yuan J-S, Bi Y. Process and temperature robust voltage multiplier design for RF energy harvesting. Microelectron Reliab. 2015;55:107–113. doi: 10.1016/j.microrel.2014.09.024
  • Mouapi A, Hakem N. A new approach to design autonomous wireless sensor node based on RF energy harvesting system. Sensors. 2018;18:133. doi: 10.3390/s18010133
  • Li Z, Zeng M, Tan H-Z. A multi-band rectifier with modified hybrid junction for RF energy harvesting. Microw Opt Technol Lett. 2018;60:817–821. doi: 10.1002/mop.31057
  • Muncuk U, Alemdar K, Sarode JD, et al. Multi-band ambient RF energy harvesting circuit design for enabling battery-less sensors and IoTs. IEEE Internet of Things Journal; 2018; IEEE.
  • Yang L, Zhou YJ, Zhang C, et al. Compact multi-band wireless energy harvesting based battery-free body area networks sensor for mobile healthcare. IEEE J Electromagn RF Microw Med Biol. 2018;2:109–115. doi: 10.1109/JERM.2018.2817364
  • Palazzi V, Hester J, Bito J, et al. A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands. IEEE Trans Microw Theory Tech. 2018;66:366–379. doi: 10.1109/TMTT.2017.2721399
  • Kuhn V, Seguin F, Lahuec C, et al. Enhancing RF-to-DC conversion efficiency of wideband RF energy harvesters using multi-tone optimization technique. Int J Microw Wirel Technol. 2016;8:143–153. doi: 10.1017/S1759078714001457
  • Mansour MM, Kanaya H. Compact and broadband RF rectifier With 1.5 octave bandwidth based on a simple pair of L-section matching network. IEEE Microw Wirel Compon Lett. 2018;28:335–337. doi: 10.1109/LMWC.2018.2808419
  • Chen Y-S, Chiu C-W. Maximum achievable power conversion efficiency obtained through an optimized rectenna structure for RF energy harvesting. IEEE Trans Antennas Propag. 2017;65:2305–2317. doi: 10.1109/TAP.2017.2682228
  • Song C, Huang Y, Zhou J, et al. Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting. IEEE Trans Ind Electron. 2017;64:3950–3961. doi: 10.1109/TIE.2016.2645505
  • Collado A, Daskalakis S-N, Niotaki K, et al. Rectifier design challenges for RF wireless power transfer and energy harvesting systems. Radio Engineering. 2017;26:411.
  • Song C, Huang Y, Zhou J, et al. Recent advances in broadband rectennas for wireless power transfer and ambient RF energy harvesting. Antennas Propag. EUCAP 2017 11th Eur. Conf. On. IEEE; 2017; p. 341–345.
  • Du Z-X, Zhang XY. High-Efficiency single-and dual-band rectifiers using a complex impedance compression network for wireless power transfer. IEEE Trans Ind Electron. 2018;65:5012–5022. doi: 10.1109/TIE.2017.2772203
  • Chouhan SS, Halonen K. A 0.18µm CMOS voltage multiplier arrangement for RF energy harvesting. Analog Integr Circuits Signal Process. 2017;92:343–353. doi: 10.1007/s10470-017-1001-8
  • Chang Y, Chouhan SS, Halonen K. A scheme to improve PCE of differential-drive CMOS rectifier for low RF input power. Analog Integr Circuits Signal Process. 2017;90:113–124. doi: 10.1007/s10470-016-0825-y
  • Ouda MH, Khalil W, Salama KN. Self-biased differential rectifier with enhanced dynamic range for wireless powering. IEEE Trans Circuits Syst II Express Briefs. 2017;64:515–519. doi: 10.1109/TCSII.2016.2591263
  • Andam MEC, Canja CMP, Capilayan MA. A design of self-biased cross coupled rectifier with integrated dual threshold voltage for RF energy harvesting application. Procedia Comput Sci. 2017;109:384–391. doi: 10.1016/j.procs.2017.05.405
  • Almansouri AS, Ouda MH, Salama KN. A CMOS RF-to-DC power converter with 86% efficiency and-19.2-dBm sensitivity. IEEE Trans Microw Theory Tech. 2018;66:2409–2415. doi: 10.1109/TMTT.2017.2785251
  • Khan SR, Choi G. High-efficiency CMOS rectifier with minimized leakage and threshold cancellation features for low power bio-implants. Microelectron J 2017;66:67–75. doi: 10.1016/j.mejo.2017.06.002
  • Mishra D, De S, Jana S, et al. Smart RF energy harvesting communications: challenges and opportunities. IEEE Commun Mag. 2015;53:70–78. doi: 10.1109/MCOM.2015.7081078
  • Khan AA, Jayaswal G, Gahaffar FA, et al. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications. Microelectron Eng. 2017;181:34–42. doi: 10.1016/j.mee.2017.07.003
  • Fang B, Carpentieri M, Louis S, et al. Spintronic nano-scale harvester of broadband microwave energy. J Appl Phys. 2018;1–29.
  • Seabaugh AC, Zhang Q. Low-voltage tunnel transistors for beyond CMOS logic. Proc IEEE. 2010;98:2095–2110. doi: 10.1109/JPROC.2010.2070470
  • Cavalheiro D, Moll F, Valtchev S. Insights into tunnel FET-based charge pumps and rectifiers for energy harvesting applications. IEEE Trans Very Large Scale Integr VLSI Syst. 2017;25:988–997. doi: 10.1109/TVLSI.2016.2617203
  • Nunes Cavalheiro D, Moll Echeto FdB, Valtchev S. Prospects of tunnel FETs in the design of power management circuits for weak energy harvesting dc sources. IEEE J Electron Devices Soc. 2018;6:382–391. doi: 10.1109/JEDS.2018.2808950
  • Prakash P, Sundaram KM, Bennet MA. A review on carbon nanotube field effect transistors (CNTFETs) for ultra-low power applications. Renew Sustain Energy Rev. 2018;89:194–203. doi: 10.1016/j.rser.2018.03.021
  • Kobayashi M, Hiramoto T. On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2 V supply voltage with ferroelectric HfO2 thin film. AIP Adv. 2016;6:P-025112(1–7).
  • Sun Y, Sun M, Xie D. Graphene electronic devices. Graphene Elsevier. Elsevier; 2018. p. 103–155. doi: 10.1016/B978-0-12-812651-6.00005-7
  • Soleimanzadeh R, Kolahdouz M, Ebrahimi P, et al. Ultra-high efficiency piezotronic sensing using piezo-engineered FETs. Sens Actuators Phys. 2018;270:240–244. doi: 10.1016/j.sna.2018.01.002
  • Zaman M, Wong HY, Islam MS, et al. An integrated hybrid energy harvester for autonomous wireless sensor network nodes. Int J Photoenergy. 2014;2014:1–8. doi: 10.1155/2014/760534
  • Duong V-H, Hieu NX, Lee H-S, et al. A battery-assisted passive EPC Gen-2 RFID sensor tag IC with efficient battery power management and RF energy harvesting. IEEE Trans Ind Electron. 2016;63:7112–7123. doi: 10.1109/TIE.2016.2585463
  • Rosa RL, Zoppi G, Finocchiaro A, et al. An over-the-distance wireless battery charger based on RF energy harvesting. 14th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD); 2017 Jun 12–15; Giardini Naxos, Italy, IEEE.
  • Wang J, Zheng Y, Wang S, et al. Human body channel energy harvesting scheme with- 22.5 dBm sensitivity 25.87% efficiency threshold-compensated rectifier. IEEE International Symposium on Circuits and Systems (ISCAS); 2015 Jul 30; Lisbon, Portugal, IEEE.
  • Lee S-Y, Tsai T-M, Lai W-C, et al. A 925 MHz 1.4 μW wireless energy-harvesting circuit with error-correction ASK demodulation for RFID healthcare system. IEEE International Symposium on Circuits and Systems (ISCAS); 2015 May 24–27; Lisbon, Portugal, IEEE.
  • Martins GC, de Sousa FR. An RF-powered temperature sensor designed for biomedical applications. 26th Symposium on Integrated Circuits and Systems Design (SBCCI); 2013 Sept 2–6; Curitiba, Brazil, IEEE.
  • Papotto G, Carrara F, Finocchiaro A, et al. A 90-nm CMOS 5-Mbps crystal-less RF-powered transceiver for wireless sensor network nodes. IEEE J Solid-State Circuits. 2014;49:335–346. doi: 10.1109/JSSC.2013.2285371
  • Wang X, Mortazawi A. High sensitivity RF energy harvesting from AM broadcasting stations for civilian infrastructure degradation monitoring. IEEE International Wireless Symposium (IWS); 2013 Apr 14–18; Beijing, China, IEEE.
  • Gudan K, Chemishkian S, Hull JJ, et al. A 2.4 GHz ambient RF energy harvesting system with- 20dbm minimum input power and NiMH battery storage. RFID technol. Appl. Conf. RFID-TA 2014; IEEE; p. 7–12.
  • Khang S-T, Yu JW, Lee W-S. Compact folded dipole rectenna with RF-based energy harvesting for IoT smart sensors. Electron Lett. 2015;51:926–928. doi: 10.1049/el.2015.0138
  • Kumar SA, Shanmuganantham T. Design of implantable CPW fed monopole H-slot antenna for 2.45 GHz ISM band applications. AEU-Int J Electron Commun. 2014;68:661–666. doi: 10.1016/j.aeue.2014.02.010
  • Visser HJ, Keyrouz S., Radiative RF Power transfer solutions for wireless sensors. Antennas Propag. Soc. Int. Symp. APSURSI 2014 IEEE; 2014; p. 1401–1402.
  • Arrawatia M, Baghini MS, Kumar G. Differential microstrip antenna for RF energy harvesting. IEEE Trans Antennas Propag. 2015;63:1581–1588. doi: 10.1109/TAP.2015.2399939
  • Peter T, Rahman TA, Cheung SW, et al. A novel transparent UWB antenna for photovoltaic solar panel integration and RF energy harvesting. IEEE Trans Antennas Propag. 2014;62:1844–1853. doi: 10.1109/TAP.2014.2298044
  • Xiao SQ, Li RQ. Antennas design for implantable medical devices. Comput. Electromagn. ICCEM 2015 IEEE Int. Conf. 2015; p. 61–63.
  • Zeng M, Andrenko AS, Liu X, et al. A compact fractal loop rectenna for RF energy harvesting. IEEE Antennas Wirel Propag Lett. 2017;16:2424–2427. doi: 10.1109/LAWP.2017.2722460
  • Bito J, Bahr R, Hester JG, et al. A novel solar and electromagnetic energy harvesting system With a 3-D printed package for energy efficient internet-of-things wireless sensors. IEEE Trans Microw Theory Tech. 2017;65:1831–1842. doi: 10.1109/TMTT.2017.2660487
  • Rodriguez AN, Cruz FRG, Ramos RZ. Design of 900 MHz AC to DC converter using native Cmos device of TSMC 0.18 micron technology for RF energy harvest application. Univers J Electr Electron Eng. 2015;3:99–105. doi: 10.13189/ujeee.2015.030306
  • Beheshti Asl M, Zarifi MH. RF to DC micro-converter in standard CMOS process for on-chip power harvesting applications. AEU – Int J Electron Commun. 2014;68:1180–1184. doi: 10.1016/j.aeue.2014.06.008
  • Pasca M, D’Amico S, Chironi V, et al. A- 19dBm sensitivity integrated RF-DC converter with regulated output voltage for powering UHF wireless sensors. Adv. Sens. Interfaces IWASI 2015 6th IEEE Int. Workshop. IEEE; 2015; p. 168–171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.