87
Views
0
CrossRef citations to date
0
Altmetric
Reviews

New developments in high-frequency diffraction by smooth surfaces

Pages 2321-2338 | Received 11 Apr 2018, Accepted 05 Jul 2018, Published online: 01 Aug 2018

References

  • Keller JB. Geometrical Theory of Diffraction. J Optic Soc Am. 1962;52:116–130. doi: 10.1364/JOSA.52.000116
  • Andronov IV, Bouche D, Molinet F. Asymptotic and hybrid methods in electromagnetics. (IEE Electromagnetic waves series; vol. 51). London: IEE Press; 2005.
  • Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs and mathematical tables. (Applied mathematical series; vol. 55). New York: National Bureau of Standards; 1964.
  • Fock VA. Electromagnetic diffraction and propagation problems. London: Pergamon Press; 1965.
  • Bouche D. Etude des ondes rampantes sur un corps convexe decrit par une condition d'impedance par une methode de developpement asymptotique. Ann télécommun. 1992;47:400–412. (in French).
  • Andronov IV. The influence of the impedance on creeping wave propagation. Acoust Phys. 2008;54:139–145. doi: 10.1134/S1063771008020012
  • Andronov IV, Bouche D. Ondes rampantes sur un objet convexe décrit par une condition d'impédance anisotrope. Ann télécommun. 1994;49(3–4):193–198. (in French).
  • Andronov IV, Bouche D. Degeneration of electromagnetic creeping waves in a vicinity of critical values of anisotropic impedance. IEEE Trans Antennas Propag. 2008;56:1984–1992. doi: 10.1109/TAP.2008.924719
  • Andronov IV, Bouche D. Asymptotics of creeping waves in the case of nondiagonalizable surface impedance. Prog Electromagn Res. 2006;59:215–230. doi: 10.2528/PIER05093001
  • Andronov IV, Zaika DY, Perel MV. An effect of excitation of a transverse magnetic creeping wave when a transverse electric wave crosses the line of the coincidence of propagation constants. J Commun Tech Electron. 2011;56:798–804. doi: 10.1134/S1064226911070035
  • Senior TBA, Volakis JL. Approximate boundary conditions in electromagnetics. (IEE Electromagnetic waves series; vol. 41). London: IEE Press; 1995.
  • Sukharevsky IO, Altintas A. Validation of higher-order approximations and boundary conditions for lossy conducting bodies. IEEE Trans Antennas Propag. 2014;62:4656–4663. doi: 10.1109/TAP.2014.2331991
  • Culhaoglu AE, Osipov AV, Russer P. Mono- and bistatic scattering reduction by a metamaterial low reflection coating. IEEE Trans Antennas Propag. 2013;61:462–466. doi: 10.1109/TAP.2012.2220095
  • Osipov AV. Physical theory of diffraction for scatterers with low reflection surface. Radio Sci. 2014;49:1052–1064. doi: 10.1002/2014RS005550
  • Osipov AV. Scattering cross-section of impedance-matched bodies. IEEE Trans Antennas Propag. 2015;63:3122–3126. doi: 10.1109/TAP.2015.2421945
  • Andronov IV, Bouche D. The creeping and whispering gallery waves on the surface of a transparent body. J Electromagn Waves Appl. 1995;9:503–520. doi: 10.1163/156939395X00640
  • Andronov IV. Waves concentrated near weak-contrast boundaries. Acoust Phys. 2004;50:363–369. doi: 10.1134/1.1776211
  • Osipov AV. Backscattering from electrically large low-absorption spheres. 2016 URSI International Symposium on Electromagnetic Theory (EMTS); 2016 August 14–18; Espoo, Finland. p. 76–79.
  • Osipov AV. Backscattering from electrically large low-absorption spheres: an explanation of solar glories. 32-nd URSI GASS, Montreal, 19–26 August 2017.
  • Naishadham K, Piou JE. Analytical characterization and validation of creeping waves on dielectric coated and perfectly conducting cylinders. Radio Sci. 2010;45:RS5014.
  • Hong S. Asymptotic theory of electromagnetic and acoustic diffraction by smooth convex surfaces of variable curvature. J Math Phys. 1967;8:1223–1232. doi: 10.1063/1.1705339
  • Andronov IV, Bouche D. Calcul du second terme de la constante de propagation des ondes rampantes par une methode de couche-limite. Ann télécommun. 1994;49(3-4):199–204. (in French)
  • Andronov IV, Bouche D. Asymptotic of creeping waves on a strongly prolate body. Ann télécommun. 1994;49(3-4):205–210.
  • Kirpichnikova NY, Popov MM. Leontovich-Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies. J Math Sci. 2013;194:30–43. doi: 10.1007/s10958-013-1504-5
  • Molinet FA. Plane wave diffraction by a strongly elongated object illuminated in the paraxial direction. Prog Electromagn Res B. 2008;6:135–151. doi: 10.2528/PIERB08031211
  • Andronov IV. High frequency asymptotics of electromagnetic field on a strongly elongated spheroid. PIERS Online. 2009;5:536–540.
  • Andronov IV, Bouche D, Duruflé M. High-frequency diffraction of a plane electromagnetic wave by an elongated spheroid. IEEE Trans Antennas Propag. 2012;60:5286–5295. doi: 10.1109/TAP.2012.2207683
  • Andronov IV, Bouche D. Forward and backward wave in high-frequency diffraction by an elongated spheroid. Prog Electromagn Res B. 2011;29:209–231. doi: 10.2528/PIERB11021805
  • Andronov IV. The currents induced by a high-frequency wave incident at a small angle to the axis of strongly elongated spheroid. Prog Electromagn Res M. 2013;28:273–287. doi: 10.2528/PIERM12120102
  • Andronov IV, Bouche D, Duruflé M. High-frequency currents on a strongly elongated spheroid. IEEE Trans Antennas Propag. 2017;65:794–804. doi: 10.1109/TAP.2016.2633160
  • Andronov IV. Diffraction of spherical waves on large strongly elongated spheroids. Acta Acust United Ac. 2013;99:177–182. doi: 10.3813/AAA.918600
  • Andronov IV. Point source diffraction by a strongly elongated spheroid. J Sound Vib. 2015;355:360–368. doi: 10.1016/j.jsv.2015.06.014
  • Andronov IV, Shevnin D. High-frequency scattering by perfectly conducting prolate spheroids. J Electromagn Waves Appl. 2014;28:1388–1396. doi: 10.1080/09205071.2014.924882
  • Andronov IV, Mittra R. High-frequency asymptotics for the radar cross-section computation of a prolate spheroid with high aspect ratio. IEEE Trans Antennas Propag. 2015;63:336–343. doi: 10.1109/TAP.2014.2368114
  • Andronov IV, Mittra R. Recent advances in the asymptotic theory of diffraction by elongated bodies. Prog Electromagn Res. 2015;150:163–182. doi: 10.2528/PIER15011405
  • Andronov IV, Mittra R. High-frequency asymptotics for diffraction by a strongly elongated canonical object. 2016 URSI International Symposium on Electromagnetic Theory (EMTS); 2016 August 14–18; Espoo, Finland. p. 67–68.
  • Andronov IV. Diffraction of spherical waves on large strongly elongated spheroids. Acta Acoust United Ac. 2013;99:177–182. doi: 10.3813/AAA.918600
  • Andronov IV. Calculation of diffraction by strongly elongated bodies of revolution. Acoust Phys. 2012;58:22–29. doi: 10.1134/S1063771012010022
  • Andronov IV. Strong elongation versus a large transverse curvature in the problems of high-frequency diffraction. Antennas Wirel Propag Lett. 2014;13:826–827. doi: 10.1109/LAWP.2014.2319353
  • Andronov IV. High-frequency diffraction by a narrow hyperboloid of revolution. Acoust Phys. 2017;63:133–140. doi: 10.1134/S1063771017010018
  • Andronov IV, Bouche D. Diffraction by a narrow circular cone as by a strongly elongated body. J Math Sci. 2012;185:517–522. doi: 10.1007/s10958-012-0934-9
  • Andronov IV. Diffraction by a narrow cone at skew incidence. J Math Sci. 2017;226:695–700. doi: 10.1007/s10958-017-3558-2
  • Andronov IV. Diffraction by a narrow circular cone in parabolic equation approximation. Proceedings of PIERS-2017 in St.-Petersburg; 2017.
  • Bowman JJ, Senior TBA, Uslenghi PLE. Electromagnetic and acoustic scattering by simple shapes. Amsterdam: North-Holland Publishing Co; 1969.
  • Kaifas TN. Uniform asymptotic solution for the surface magnetic field valid both within and outside the paraxial region of a perfect electrically conducting circular cylinder. IEEE Trans Antennas Propag. 2012;60:4785–4794. doi: 10.1109/TAP.2012.2207333
  • Bernard JML. Advanced theory of the diffraction by a semi-infinite impedance cone. Oxford: Alpha Science International Ltd; 2014.
  • Andronov IV. High-frequency diffraction by an elliptic cylinder: the near field. J Electromagn Waves Appl. 2014;28:2318–2326. doi: 10.1080/09205071.2014.966860
  • Andronov IV, Mittra R. High-frequency diffraction by an elliptic cylinder: the far field. J Electromagn Waves Appl. 2015;29:1317–1328. doi: 10.1080/09205071.2015.1043146
  • Andronov IV. On high-frequency scattering by a strip at nearly grazing incidence. Acoust Phys. 2016;62:399–404. doi: 10.1134/S1063771016040023
  • Andronov IV, Bouche D. Diffraction by a strip at almost grazing angle. J Sound Vib. 2016;374:185–198. doi: 10.1016/j.jsv.2016.03.021
  • Sheshadri SR, Wu TT. High-frequency diffraction of plane waves by an infinite slit for grazing incidence. IRE Trans Antennas Propag. 1960;8:37–42. doi: 10.1109/TAP.1960.1144804
  • Sheshadri SR. High-frequency diffraction of plane waves by an infinite slit. (Scientific Report No. 20). Cruft Laboratory, Harvard University; 1958.
  • Andronov IV, Petrov VE. Diffraction by an impedance strip at almost grazing incidence. IEEE Trans Antennas Propag. 2016;64:3565–3572. doi: 10.1109/TAP.2016.2570249
  • Korol'kov AI, Shanin AV. High-frequency plane wave diffraction by an ideal strip at oblique incidence: parabolic equation approach. Acoust Phys. 2016;62:399–407. doi: 10.1134/S1063771016040023
  • Korol'kov AI, Shanin AV. High-frequency wave diffraction by an impedance segment at oblique incidence. Acoust Phys. 2016;62:648–656.
  • Williams MH. Diffraction by a finite strip. Quart J Mech Appl Math. 1982;35:103–124. doi: 10.1093/qjmam/35.1.103
  • Shanin AV. Weinstein's diffraction problem: embedding formula and spectral equation in parabolic approximation. SIAM J Appl Math. 2009;70:1201–1218. doi: 10.1137/080739719
  • Aguilar AG, Pathak PH, Sierra-Perez M. A canonical utd solution for electromagnetic scattering by an electrically large impedance circular cylinder illuminated by an obliquely incident plane wave. IEEE Trans Antennas Propag. 2013;61:5144–5154. doi: 10.1109/TAP.2013.2274691
  • Alisan B, Ertürk VB. A high-frequency based asymptotic solution for surface fields on a source-excited sphere with an impedance boundary condition. Radio Sci. 2010;45:RS5008.
  • Kotsis AD, Roumeliotis JA. Electromagnetic scattering by a metallic spheroid using shape perturbation method. Prog Electromagn Res. 2007;67:113–134. doi: 10.2528/PIER06080202
  • Zouros GP, Kotsis AD, Roumeliotis JA. Electromagnetic scattering from a metallic prolate or oblate spheroid using asymptotic expansions on spheroidal eigenvectors. IEEE Trans Antennas Propag. 2014;62:839–851. doi: 10.1109/TAP.2013.2289363
  • Molinet F. Diffraction of a creeping wave by the edge of a strongly elongated spheroid truncated by a plane perpendicular to its axis. Electromagnetic Theory (EMTS), 2016 URSI International Symposium; 2016 August 14–18; Espoo, Finland.
  • Molinet F. Asymptotic currents on an ogival cylinder with a strongly elongated cross-section: the case of overlapping transition regions. 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA); Verona, Italy; 2017. p. 537–540.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.