69
Views
1
CrossRef citations to date
0
Altmetric
Articles

Self-action effects of quadruple-Gaussian laser beam in media possessing cubic–quintic nonlinearity

Pages 2350-2366 | Received 28 Dec 2017, Accepted 30 Jul 2018, Published online: 21 Aug 2018

References

  • Maiman TH. Stimulated optical radiation in Ruby. Nature. 1960;187:493–494. doi: 10.1038/187493a0
  • Franken PA, Hill AE, Peters CW, et al. Generation of optical harmonics. Phys Rev Lett. 1961;7:118–119. doi: 10.1103/PhysRevLett.7.118
  • Winterfeldt C, Spielmann C, Gerber G. Optimal control of high-harmonic generation. Rev Mod Phys. 2008;80:117–140. doi: 10.1103/RevModPhys.80.117
  • Milchberg HM, Durfee III CG, McIlrath TJ. High-order frequency conversion in the plasma waveguide. Phys Rev Lett. 1995;75:2494–2497. doi: 10.1103/PhysRevLett.75.2494
  • Askaryan G. Effects of the gradient of strong electromagnetic beam on electrons and atoms. Soviet Phys JETP. 1962;15:1088.
  • Karlsson M. Optical beams in saturable self-focusing media. Phys Rev A. 1992;46:2726–2734. doi: 10.1103/PhysRevA.46.2726
  • Karlsson M, Anderson D, Desaix M, et al. Dynamic effects of Kerr nonlinearity and spatial diffraction on self-phase modulation of optical pulses. Opt Lett. 1991;16:1373. doi: 10.1364/OL.16.001373
  • Snyder AW, Mitchell DJ, Poladian L, et al. Self-induced optical fibers: spatial solitary waves. Opt Lett. 1991;16:21. doi: 10.1364/OL.16.000021
  • Jana S, Singh A, Porsezian K, et al. Self-trapped elliptical super-Gaussian beam in cubic–quintic media. Opt Commun. 2014;332:311–320. doi: 10.1016/j.optcom.2014.06.061
  • Stegeman GI, Segev M. Optical spatial solitons and their interactions: universality and diversity. Science. 1999;286:1518–1523. doi: 10.1126/science.286.5444.1518
  • Stix G. The undying pulse. Sci Am. 2001;285:30–32. doi: 10.1038/scientificamerican1201-30
  • Siegman AE. Lasers. California: University Science Books; 1986.
  • Chiao RY, Garmire E, Townes CH. Self-trapping of optical beams. Phys Rev Lett. 1965;13:479–482. doi: 10.1103/PhysRevLett.13.479
  • Chen Y. Self-trapped light in saturable nonlinear media. Opt Lett. 1991;16:4–6. doi: 10.1364/OL.16.000004
  • Gouy LG. Sur une propriete nouvelle des ondes lumineuses. C R Acad Sci Paris Ser IV. 1890;110:1251.
  • Boyd RW. Intuitive explanation of the phase anomaly of focused light beams. J Opt Soc Am. 1980;70:877–880. doi: 10.1364/JOSA.70.000877
  • Feng S, Winful HG. Physical origin of the Gouy phase shift. Opt Lett. 2001;26:485–487. doi: 10.1364/OL.26.000485
  • Hariharan P, Robinson P. The Gouy phase shift as a geometrical quantum effect. J Mod Opt. 1996;43:219.
  • Yang J, Winful HG. Generalized eikonal treatment of the Gouy phase shift. Opt Lett. 2006;31:104–106. doi: 10.1364/OL.31.000104
  • Coutaz JL, Kull M. Saturation of the nonlinear index of refraction in semiconductor-doped glass. J Opt Soc Am B. 1991;8:95–98. doi: 10.1364/JOSAB.8.000095
  • Roussignol P, Ricard D, Lukasik J, et al. New results on optical phase conjugation in semiconductor-doped glasses. J Opt Soc Am B. 1987;4:5–13. doi: 10.1364/JOSAB.4.000005
  • Jovanoski Z, Rowland DR. Variational analysis of solitary waves in a homogeneous cubic–quintic nonlinear medium. J Mod Opt. 2001;48:1179–1193. doi: 10.1080/09500340108231762
  • Gatz S, Herrmann J. Soliton propagation and soliton collision in double-doped fibers with a non-Kerr-like nonlinear refractive-index change. Opt Lett. 1992;17:484–486. doi: 10.1364/OL.17.000484
  • Stegeman GI, Stolen RH. Waveguides and fibers for nonlinear optics. J Opt Soc Am B. 1989;6:652–662. doi: 10.1364/JOSAB.6.000652
  • Tanev S, Pushkarov DI. Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides. Opt Commun. 1997;141:322–328. doi: 10.1016/S0030-4018(97)00230-7
  • Pushkarov D, Tanev S. Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt Commun. 1996;124:354–364. doi: 10.1016/0030-4018(95)00552-8
  • Biswas A. Quasi-stationary optical solitons with parabolic law nonlinearity. Opt Commun. 2003;216:427–437. doi: 10.1016/S0030-4018(02)02309-X
  • Kelley PL. Self-focusing of optical beams. Phys Rev Lett. 1965;15:1005–1008. doi: 10.1103/PhysRevLett.15.1005
  • Alfano RR, Shapiro SL. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys Rev Lett. 1970;24:592–594. doi: 10.1103/PhysRevLett.24.592
  • Gustafson TK, Taran JP, Haus HA, et al. Self-modulation, self-steepening, and spectral development of light in small-scale trapped filaments. Phys Rev. 1969;177:306–313. doi: 10.1103/PhysRev.177.306
  • Manassah JT, Baldeck PL, Alfano RR. Self-focusing and self-phase modulation in a parabolic graded-index optical fiber. Opt Lett. 1988;13:589–591. doi: 10.1364/OL.13.000589
  • Karlsson M, Anderson D, Desaix M. Dynamics of self-focusing and self-phase modulation in a parabolic index optical fiber. Opt Lett. 1992;17:22–24. doi: 10.1364/OL.17.000022
  • Habibi M, Ghamari F. Investigation of non-stationary self-focusing of intense laser pulse in cold quantum plasma using ramp density profile. Phys Plasmas. 2012;19:113109.
  • Habibi M, Ghamari F. Stationary self-focusing of intense laser beam in cold quantum plasma using ramp density profile. Phys Plasmas. 2012;19:103110.
  • Liu W, Yang C, Liu M, et al. Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys Rev E. 2017;96:042201.
  • Wang Q, Li J, Xie W. Elliptic optical soliton in anisotropic nonlocal competing cubic–quintic nonlinear media. IEEE Photonics J. 2018;10:6500611.
  • Gupta N, Singh A. Effect of cross-focusing of two q-Gaussian laser beams on excitation of electron plasma wave in collisional plasma. Optik. 2016;127:8542–8553. doi: 10.1016/j.ijleo.2016.04.045
  • Singh A, Gupta N. Second harmonic generation by self focused q-Gaussian laser beam in preformed collisional parabolic plasma channel. Optik. 2016;127:2432–2438. doi: 10.1016/j.ijleo.2015.11.157
  • Singh N, Gupta N, Singh A. Second harmonic generation of Cosh-Gaussian laser beam in collisional plasma with nonlinear absorption. Opt Commun. 2016;381:180–188. doi: 10.1016/j.optcom.2016.06.047
  • Singh A, Gupta N. Second harmonic generation of self-focused Cosh-Gaussian laser beam in collisional plasma. Optik. 2016;127:5452–5461. doi: 10.1016/j.ijleo.2016.02.039
  • Sati P, Sharma A, Tripathi VK. Self focusing of a quadruple Gaussian laser beam in a plasma. Phys Plasmas. 2012;19:092117.
  • Moshkelgosha M. Controlling the self-focusing of quadruple Gaussian beam in plasma. IEEE Trans Plasma Sci. 2016;44:894–898. doi: 10.1109/TPS.2016.2555947
  • Lam JF, Lippmann B, Tappert F. Moment theory of self-trapped laser beams with nonlinear saturation. Opt Commun. 1975;15:419–421. doi: 10.1016/0030-4018(75)90260-6
  • Lam JF, Lippmann B, Tappert F. Self-trapped laser beams in plasma. Phys Fluids. 1977;20:1176. doi: 10.1063/1.861679
  • Goldman MV. Strong turbulance of plasma waves. Rev Mod Phys. 1984;56:709–735. doi: 10.1103/RevModPhys.56.709

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.