263
Views
1
CrossRef citations to date
0
Altmetric
Articles

Tunable multiband band-stop filter based on graphene metamaterial in THz frequency

, , &
Pages 2481-2489 | Received 23 Jan 2018, Accepted 27 Aug 2018, Published online: 10 Sep 2018

References

  • Soref R. Mid-infrared photonics in silicon and germanium. Nat Photonics. 2010;4(8):495–497. doi: 10.1038/nphoton.2010.171
  • Sabah C, Uckun S. Multilayer system of Lorentz/Drude type metamaterials with dielectric slabs and its application to electromagnetic filters. Prog Electromagn Res. 2009;91(4):349–364. doi: 10.2528/PIER09031306
  • Williams GP. Filling the THz gap – high power sources and applications. Rep Prog Phys. 2006;69(2):301–326. doi: 10.1088/0034-4885/69/2/R01
  • Landy NI, Chen HT, O’Hara JF, et al. Terahertz metamaterials for active, tunable, and dynamic devices. International congress on optics and optoelectronics. Int Soc Opt Photonics. 2007;34(11): 65810P–65810P-8.
  • Withayachumnankul W, Abbott D. Metamaterials in the terahertz regime. IEEE Photonics J. 2009;1(2):99–118. doi: 10.1109/JPHOT.2009.2026288
  • Mccrindle IJH, Grant J, Drysdale TD, et al. Multi-spectral materials: hybridisation of optical plasmonic filters and a terahertz metamaterial absorber. Adv Opt Mater. 2014;2(2):149–153. doi: 10.1002/adom.201300408
  • Zhou Z, Chen YL, Feng LS. Characterization and analysis of electrically controlled metamaterial terahertz modulators using the current response method. Meas Sci Technol. 2015;26(11):647–657. doi: 10.1088/0957-0233/26/11/115001
  • Kanamori Y, Hokari R, Hane K. MEMS for plasmon control of optical metamaterials. IEEE J Sel Top Quantum Electron. 2015;21(4):137–146. doi: 10.1109/JSTQE.2014.2385957
  • Born N, Al-Naib I, Jansen C, et al. Terahertz metamaterials with ultrahigh angular sensitivity. Adv Opt Mater. 2015;3(5):642–645. doi: 10.1002/adom.201400469
  • Baqir MA, Ghasemi M, Choudhury PK, et al. Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. J Electromagn Waves Appl. 2015;29(18):2408–2419. doi: 10.1080/09205071.2015.1073124
  • Saleki Z, Entezar SR, Madani A. Optical properties of a one-dimensional photonic crystal containing a graphene-based hyperbolic metamaterial defect layer. Appl Opt. 2017;56(2):317–323. doi: 10.1364/AO.56.000317
  • Wei Z, Li X, Yin J, et al. Active plasmonic band-stop filters based on graphene metamaterial at THz wavelengths. Opt Express. 2016;24(13):14344. doi: 10.1364/OE.24.014344
  • Wang J, Zhang B, Wang X, et al. Flexible dual-band band-stop metamaterials filter for the terahertz region. Opt Mater Express. 2017;7(5):1656. doi: 10.1364/OME.7.001656
  • Khatua S, Chang WS, Swanglap P, et al. Active modulation of nanorod plasmons. Nano Lett.. 2011;11(9):3797. doi: 10.1021/nl201876r
  • Dan L, Yong L, Wang HX, et al. Gain characteristics of grapheme plasma in terahertz range. Acta Phys Sin. 2016;56(4):554–557.
  • Lee SH, Choi M, Kim TT, et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nat Mater. 2012;11(11):936–941. doi: 10.1038/nmat3433
  • Chu HS, Gan CH. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl Phys Lett. 2013;102(23):407. doi: 10.1063/1.4810003
  • Xia S, Zhai X, Wang L, et al. Dynamically tuning the optical coupling of surface plasmons in coplanar graphene nanoribbons. Opt Commun. 2015;352:110–115. doi: 10.1016/j.optcom.2015.05.002
  • Yang K, Liu S, Arezoomandan S, et al. Graphene-based tunable metamaterial terahertz filters. Appl Phys Lett. 2014;105(9):910–1716.
  • Hanson GW. Dyadic green’s functions for an anisotropic, non-local model of biased graphene. IEEE Trans Antennas Propag. 2008;56(3):747–757. doi: 10.1109/TAP.2008.917005
  • Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol. 2012;7(5):330–334. doi: 10.1038/nnano.2012.59
  • Liu Z, Lu X, Peng P, et al. Room-temperature Fano resonance tunable by chemical doping in few-layer graphene synthesized by chemical-vapor deposition. Phys Rev B Condens Matter. 2010;82(15):2635–2645.
  • Hanson GW. Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys. 2008;103(6):19912. doi: 10.1063/1.2891452
  • Gao W, Shu J, Qiu C, et al. Excitation of plasmonic waves in graphene by guided-mode resonances. Acs Nano. 2012;6(9):7806. doi: 10.1021/nn301888e
  • Ju L, Geng B, Horng J, et al. Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol. 2011;6(10):630–634. doi: 10.1038/nnano.2011.146
  • Fei Z, Andreev GO, Bao W, et al. Infrared nanoscopy of Dirac plasmons at the graphene-SiO interface. Nano Lett.. 2011;11(11):4701–4705. doi: 10.1021/nl202362d
  • Kwon KC, Choi KS, Kim SY. Increased work function in few-layer graphene sheets via metal chloride doping. Adv Funct Mater. 2012;22(22):4724–4731. doi: 10.1002/adfm.201200997
  • Horng J, Chen CF, Geng B, et al. Drude conductivity of Dirac fermions in graphene. Phys Rev B Condens Matter. 2011;83(16):1844–1844. doi: 10.1103/PhysRevB.83.165113

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.