102
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effective medium of stacked structure composed of periodic arrays of holes for low terahertz regime

Pages 57-70 | Received 01 Jun 2018, Accepted 29 Aug 2018, Published online: 11 Sep 2018

References

  • Rodriguez-Berral R, Medina F, Mesa F, et al. Quasi-Analytical modeling of transmission/reflection in strip/slit gratings loaded with dielectric slabs. IEEE Trans Microw Theory Tech. 2012;60:405–418. doi: 10.1109/TMTT.2011.2181186
  • Butler CAM, Parsons J, Sambles JR, et al. Microwave transmissivity of a metamaterial-dielectric stack. Appl Phys Lett. 2009;95:174101. doi: 10.1063/1.3253703
  • Kaipa CSR Y, Medina F AB, Mesa F, et al. Circuit modeling of the transmissivity of stacked two-dimensional metallic meshes. Opt Express. 2010;18:13309–13320. doi: 10.1364/OE.18.013309
  • Yang J, Sauvan C, Liu H T, et al. Theory of fishnet negative-index optical metamaterials. Phys Rev Lett. 2011;107:043903. doi: 10.1103/PhysRevLett.107.043903
  • Marqués R, Jelinek L, Mesa F, et al. Analytical theory of wave propagation through stacked fishnet metamaterials. Opt Express. 2009;17:11582–11593. doi: 10.1364/OE.17.011582
  • Beruete M, Campillo I, Navarro-Cía M, et al. Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays. IEEE Trans Antennas Propagat. 2007;55:1514–1521. doi: 10.1109/TAP.2007.897324
  • Medina F, Mesa F. Analytical theory of extraordinary transmission through metallic diffraction screens perforated by small holes. Opt Express. 2009;17:5571–5579. doi: 10.1364/OE.17.005571
  • Medina F, Mesa F, Marqués R. Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective. IEEE Trans Microw Theory Tech. 2008;56:3108–3120. doi: 10.1109/TMTT.2008.2007343
  • Medina F, Mesa F, Skigin DC. Extraordinary transmission through arrays of slits: a circuit theory model. IEEE Trans Microw Theory Tech. 2010;58:105–115. doi: 10.1109/TMTT.2009.2036341
  • Yarmoghaddam E, Shirmanesh G K, Khavasi A. Circuit model for periodic array of slits With multiple propagating diffracted orders. IEEE Trans Antennas Propagat. 2014;62:4041–4048. doi: 10.1109/TAP.2014.2322884
  • Barzegar-Parizi S, Khavasi A. Analytical equivalent circuit for arrays of holes covered by graphene sheet: understanding tunable extraordinary transmission. Accepted for publication at Plasmonics.
  • Khavasi A, Mehrany K, Shirmanesh GK. Corrections to “circuit model in design of THz transparent electrodes based on Two-dimensional arrays of metallic square holes”. IEEE Trans Terahertz Sci Technol. 2015;5:655–656. doi: 10.1109/TTHZ.2015.2435363
  • Molero C, Rodriguez-Berral R, Mesa F. Wideband analytical equivalent circuit for one-dimensional periodic stacked arrays. Phys Rev E. 2016;93:847. doi: 10.1103/PhysRevE.93.013306
  • Molero C, Rodriguez-Berral R, Mesa F. Wideband analytical equivalent circuit for coupled asymmetrical nonaligned slit arrays. Phys Rev E. 2017;95:960. doi: 10.1103/PhysRevE.95.023303
  • Torres V, Mesa F, Navarri-Ćıa M. Accurate circuit modeling of fishnet structures for negative-index-medium applications. IEEE Trans Microw Theory Tech. 2016;64(1):15–26. doi: 10.1109/TMTT.2015.2504441
  • Barzegar-Parizi S. Analysis of stacked structure composed of arrays of thick slits: an accurate analytical circuit model. Accepted for publication at Plasmonics.
  • Luukkonen O, Simovski C, Granet G. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches. IEEE Trans Antennas Propagat. 2008;56:1624–1632. doi: 10.1109/TAP.2008.923327
  • Shirmanesh GK, Khavasi A, Mehrany K. Accurate effective medium theory for arrays of metallic nanowires. J Optics. 2015;17:025104. doi: 10.1088/2040-8978/17/2/025104
  • Barzegar-Parizi S, Rejaei B. An exact method for the extraction of effective bulk and surface parameters of periodic artificial media. IEEE Trans Antennas Propagat. 2015;63:2521–2531. doi: 10.1109/TAP.2015.2412141
  • Silveirinha M, Engheta N. Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials. Phys Rev Lett. 2006;97:157403. doi: 10.1103/PhysRevLett.97.157403
  • Forati E, Hanson G W, Sievenpiper D. An epsilon-near-zero total-internal-reflection metamaterial antenna. IEEE Trans Antennas Propagat. 2015;63:1909–1916. doi: 10.1109/TAP.2015.2405559
  • Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission. Phys Rev Lett. 2002;89:213902. doi: 10.1103/PhysRevLett.89.213902
  • Monti A, Bilotti F, Toscano A, et al. Possible implementation of epsilon-near-zero metamaterials working at optical frequencies. Opt Comm. 2012;285:3412–3418. doi: 10.1016/j.optcom.2011.12.037
  • Silveirinha M, Engheta N. Transporting an image through a subwavelength hole. Phys Rev Lett. 2009;102:103902. doi: 10.1103/PhysRevLett.102.103902
  • D’Aguanno G, Mattiucci N, Alù A, et al. Thermal emission from a metamaterial wire medium slab. Opt Exp. 2012;20:9784–9789. doi: 10.1364/OE.20.009784
  • Zhan T, Shi X, Dai Y, et al. Transfer matrix method for optics in graphene layers. J Phys Condens Matter. 2013;25:215301. doi: 10.1088/0953-8984/25/21/215301
  • Hanson G W. Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys. 2008;103:064302. doi: 10.1063/1.2891452

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.