214
Views
1
CrossRef citations to date
0
Altmetric
Articles

Tape-helix model of analysis for the dispersion and interaction impedance characteristics of a helix loaded with a double-negative metamaterial for potential application in vacuum electron devices

, , , , &
Pages 138-150 | Received 14 Jun 2018, Accepted 24 Sep 2018, Published online: 12 Oct 2018

References

  • Caloz C, Itoh T. Novel microwave devices and structures based on the transmission-line approach of metamaterials, microwave symposium digest. IEEE MTT-S Int Microw Symp. 2003;1:195–198.
  • Qureshi M, Antoniades M, Eleftheriades GV. A compact and low-profile metamaterial ring antenna with vertical polarization. IEEE Antenn Wirel Propag Lett. 2005;4:333–336. doi: 10.1109/LAWP.2005.857041
  • Antoniades M, Eleftheriades GV. Compact, linear, lead/lag metamaterial phase shifters for broadband applications. IEEE Antenn Wirel Propag Lett. 2003;2(7):103–106. doi: 10.1109/LAWP.2003.815280
  • Abdalla MAY, Phang K, Eleftheriades GV. A 0.13-micron CMOS phase shifter using tunable positive/negative refractive index transmission lines. IEEE Microw Wirel Comp Lett. 2005;16(12): 705–707. doi: 10.1109/LMWC.2006.885648
  • Caloz C, Sanada A, Itoh T. A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans Microw Theory Tech. 2004;52(3):980–992. doi: 10.1109/TMTT.2004.823579
  • Islam R, Eleftheriades GV. Phase-agile branch-line couplers using metamaterial lines. IEEE Microw Wirel Comp Lett. 2004;14(7):340–342. doi: 10.1109/LMWC.2004.829277
  • Antoniades M, Eleftheriades GV. A broadband series power divider using zero-degree metamaterial phase-shifting lines. IEEE Microw Guided Wave Lett. 2005;15(11):808–810. doi: 10.1109/LMWC.2005.859007
  • Anatoly VG. On the use of metamaterials for increasing of output power of multi-beam klystrons. IEEE Int Vac Electron Conf Proc. 2013. p. 1–2.
  • Tan YS, Seviour R. Wave energy amplification in a metamaterial based traveling wave structure. Europhysics Lett. 2009;87(3):1–4. 34005. doi: 10.1209/0295-5075/87/34005
  • Starinshak DP, Wilson JD. Investigating dielectric and metamaterial effects in a terahertz traveling-wave tube amplifier. Cleveland (OH): Glenn Research Center, NASA NASA/TM-2008-215059; 2008.
  • Pierce JR. Traveling-wave tubes. Princeton, New York (NY): D. Van Nostrand; 1950.
  • Hutter RGE. Beam and wave electronics in microwave tubes. Princeton: D. Van Nostrand; 1960.
  • Datta SK, Kumar L, Basu BN . Investigation into a metamaterial supported helix slow-wave structure. In: Conference proceedings on the international vacuum electronics conference Bangalore; India; 2011. p. 211–212.
  • Mercuvitz N. On field representations in terms of leaky modes or eigenmodes. IRE Trans Antenn Propag. 1956;4:192–194. doi: 10.1109/TAP.1956.1144410
  • Varshney AK, Guha R, Datta SK, et al. Dispersion control of helical slow-wave structure by double negative metamaterial loading. J Electromagn Waves Appl. 2016;30(10):1308–1320. doi: 10.1080/09205071.2016.1198277
  • Ziolkowski RW, Engheta N. Introduction, history, and selected topics in fundamental theories of metamaterials. In: Engheta N, Ziolkowski RW, editors. Metamaterials: physics and engineering exploration. New Jersey: Wiley Intersciences Inc. John Wiley & Sons; 2006. p. 1–41.
  • Alu A, Engheta N. Radiation from a traveling-wave current sheet at the interface between a material and material with negative permeability and permittivity. Microw Opt Tech Lett. 2002;35(6):460–463. doi: 10.1002/mop.10638
  • Veselago VG. The electrodynamics of substances with simultaneously negative values of ϵ and μ. Sov Phys Uspehi. 1968;10:509–514. doi: 10.1070/PU1968v010n04ABEH003699
  • Lu J, Grzegorczyk TM, Zhang Y, et al. Cerenkov radiation in materials with negative permittivity and permeability. Opt Express. 2003;11(7):723–734. doi: 10.1364/OE.11.000723
  • Grbic A, Eleftheriades GV. Experimental verification of backward-wave radiation from a negative index meta-material. J Appl Phys. 2002;92:5930–5934. doi: 10.1063/1.1513194
  • Sensiper S. Electromagnetic wave propagation on helical structures. Proc IRE. 1955;43:149–161. doi: 10.1109/JRPROC.1955.278072
  • Chernin D, Antonsen TM, Levush B. Exact treatment of the dispersion and beam interaction impedance of a thin tape helix surrounded by a radially stratified dielectric. IEEE Trans Electron Devices. 1999;46:1472–1483. doi: 10.1109/16.772493
  • Jain PK, Basu BN. The inhomogeneous dielectric loading effects of practical helix supports on the interaction impedance of the slow wave structure of a TWT. IEEE Trans Electron Devices. 1992;39:727–733. doi: 10.1109/16.123501
  • Ghosh S, Jain PK, Basu BN. Rigorous tape analysis of inhomogeneously-loaded helical slow-wave structures. IEEE Trans Electron Devices. 1997;44:1158–1168. doi: 10.1109/16.595945
  • Watkins DA. Topics in electromagnetic theory. New York: John Wiley; 1958.
  • Basu BN. Electromagnetic theory and applications in beam-wave electronics. Singapore: World Scientific; 1996.
  • Sinha AK, Verma R, Gupta RK, et al. Simplified tape model of arbitrarily-loaded helical slow-wave structures for travelling-wave tubes. IEE Proc-H. 1992;139:347–350. doi: 10.1049/ip-d.1992.0046
  • Jain PK, Basu BN. Electromagnetic wave propagation through helical structures. In: Singh ON, Lakhtakia A, editors. Chapter 10, electromagnetic fields in unconventional materials and structures. New Jersey: John Wiley & Sons; 2000. p. 433–455.
  • Watkins DA, Ash EA. The Helix as a backward wave circuit structure. J Appl Phys. 1954;25(782):782–790. doi: 10.1063/1.1721730
  • Currie MR, Forster DC. The gain and bandwidth characteristics of backward-wave amplifiers. IRE Trans Electron Devices. 1957;4(1):24–34. doi: 10.1109/T-ED.1957.14197
  • Currie MR, Whinnery JR. The cascade backward-wave amplifier: A high-gain voltage-tuned filter for microwaves. Proc IRE. 1955;43(1):1617–1631. doi: 10.1109/JRPROC.1955.277988

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.