304
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design of electromagnetic wave absorbing sandwich composite for secondary bonding application

, &
Pages 625-636 | Received 28 Sep 2018, Accepted 30 Dec 2018, Published online: 17 Jan 2019

References

  • Ball RE. The fundamentals of aircraft combat survivability analysis and design, Second ed. AIAA Education Series, 2003.
  • Knott EF, Shaeffer JF, Tuley MT. Radar cross section: its prediction, measurement and reduction. MA: Artech House; 1985.
  • Vinoy KJ, Jha RM. Radar absorbing materials: from theory to design and characterization. Boston: Kluwer Academic Publishers; 1996.
  • Folgueras LDC, Alves MA, Rezende MC. Microwave absorbing paints and sheets based on carbonyl iron and polyaniline: measurement and simulation of their properties. J Aerosp Technol Manag. 2010;2(1):63–70. doi: 10.5028/jatm.2010.02016370
  • Dias JDC, Martin IM, Rezende MC. Reflectivity of hybrid microwave absorbers based on NiZn ferrite and carbon black. J Aerosp Technol Manag. 2012;4(3):267–274. doi: 10.5028/jatm.2012.04032512
  • Padhy S, Sanyal S, Meena RS, et al. Characterization and performance evaluation of radar absorbing materials. J Electromagnet Waves Appl. 2013;27(2):191–204. doi: 10.1080/09205071.2013.743447
  • Baskey HB, Akhtar MJ, Shami TC. Investigation and performance evaluation of carbon black- and carbon fibers-based wideband dielectric absorbers for X-band stealth applications. J Electromagnet Waves Appl. 2014;28(14):1703–1715. doi: 10.1080/09205071.2014.933680
  • Gibson RF. A review of recent research on mechanics of multifunctional composite materials and structures. Compos Struct. 2010;92(12):2793–2810. doi: 10.1016/j.compstruct.2010.05.003
  • Park KY, Lee SE, Kim CG, et al. Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos Sci Technol. 2006;66(3–4):576–584. doi: 10.1016/j.compscitech.2005.05.034
  • Kim JB, Lee SK, Kim CG. Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Compos Sci Technol. 2008;68(14):2909–2916. doi: 10.1016/j.compscitech.2007.10.035
  • Park KY, Han JH, Lee SB, et al. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos Sci Technol. 2009;69(7–8):1271–1278. doi: 10.1016/j.compscitech.2009.02.033
  • Choi WH, Kim JB, Shin JH JH, et al. Circuit-analog (CA) type of radar absorbing composite leading-edge for wing-shaped structure in X-band: Practical approach from design to fabrication. Compos Sci Technol. 2014;105(10):96–101. doi: 10.1016/j.compscitech.2014.10.004
  • Li W, Chen M, Zeng Z, et al. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization. Compos Sci Technol. 2017;145(16):10–14. doi: 10.1016/j.compscitech.2017.03.009
  • Nam YW, Choi JH, Lee WJ, et al. Fabrication of a thin and lightweight microwave absorber containing Ni-coated glass fibers by electroless plating. Compos Sci Technol. 2017;145(16):165–172. doi: 10.1016/j.compscitech.2017.04.009
  • Kim PC, Lee DG, Seo IS, et al. Low-observable radomes composed of composite sandwich constructions and frequency selective surfaces. Compos Sci Technol. 2008;68(9):2163–2170. doi: 10.1016/j.compscitech.2008.03.016
  • Terracher F, Berginc G. A Broadband dielectric microwave absorber with periodic metallizations. J Electromagnet Waves Appl. 1999;13(12):1725–1741. doi: 10.1163/156939399X00187
  • Ma B, Liu S, Bian B, et al. Novel three-band microwave metamaterial absorber. J Electromagnet Waves Appl. 2014;28(12):1478–1486. doi: 10.1080/09205071.2014.929050
  • Li H, Yuan LH, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers. J Appl Phys. 2011;110(1):014909. doi: 10.1063/1.3608246
  • Zhai H, Li Z, Li L, et al. A dual-band wide-angle polarization insensitive ultrathin gigahertz metamaterial absorber. Microw Opt Technol Lett. 2013;55(7):1606–1609. doi: 10.1002/mop.27622
  • Bhattacharyya S, Vaibhav SK. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J Appl Phys. 2014;115(6):064508. doi: 10.1063/1.4865273
  • Cong LL, Cao XY, Song T, et al. Angular-and polarization-insensitive ultrathin double-layered metamaterial absorber for ultra-wideband application. Sci Rep. 2018;8(1):9627. doi: 10.1038/s41598-018-28041-5
  • Chen Q, Jiang JJ, Xu XX, et al. Thin and broadband electromagnetic absorber design using resistors and capacitors load frequency selective surface. J Electromagnet Waves Appl. 2012;26(16):2102–2111. doi: 10.1080/09205071.2012.726318
  • Lee WJ, Lee JW, Kim CG. Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band. Compos Sci Technol. 2008;68(12):2485–2489. doi: 10.1016/j.compscitech.2008.05.006
  • Costa F, Monorchio A, Manara G. An overview of equivalent circuit modeling techniques of frequency selective surfaces and metasurfaces. Appl Comput Electromagn Soc J. 2014;29(12):960–976.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.