356
Views
5
CrossRef citations to date
0
Altmetric
Articles

Analysis and design of an ultra-thin metamaterial absorber and its application for in-band RCS reduction of antenna

ORCID Icon, , &
Pages 654-667 | Received 20 Nov 2018, Accepted 14 Jan 2019, Published online: 26 Jan 2019

References

  • Pozar DM. RCS reduction for a microstrip antenna using a normally biased ferrite substrate. IEEE Microw Guid Wave Lett. 1992 May;2(5):196–198.
  • Gao Q, Yin Y, Yan DB, et al. Application of metamaterials to ultra-thin radar absorbing material design. Electron Lett. 2005 Aug;41(17):936–937.
  • Saville P. Review of radar absorbing materials. Dartmouth (NS): Defence Research and Development Atlantic Dartmouth (Canada); 2005 Jan.
  • Paquay M, Iriarte JC, Ederra I, et al. Thin AMC structure for radar cross-section reduction. IEEE Trans Antennas Propag. 2007 Dec;55(12):3630–3638.
  • Tan Y, Yuan N, Yang Y, et al. Improved RCS and efficient waveguide slot antenna. Electron Lett. 2011 May;47(10):582–583.
  • Zhao Y, Cao XY, Gao J, et al. Broadband RCS reduction and high gain waveguide slot antenna with orthogonal array of polarisation-dependent AMC. Electron Lett. 2013 Oct;49(21):1312–1313.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008 May;100(20):207402.
  • Tao H, Bingham CM, Strikwerda AC, et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys Rev B. 2008 Dec;78(24):241103.
  • Zhu B, Wang Z, Huang C, et al. Polarization insensitive metamaterial absorber with wide incident angle. Prog Electromagn Res. 2010;101:231–239.
  • Li L, Yang Y, Liang C. A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J Appl Phys. 2011 Sep;110(6):063702.
  • Lee J, Lim S. Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electron Lett. 2011 Jan;47(1):8–9.
  • Gu S, Barrett JP, Hand TH, et al. A broadband low-reflection metamaterial absorber. J Appl Phys. 2010 Sep;108(6):064913.
  • Bhattacharyya S, Ghosh S, Vaibhav Srivastava K. Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J Appl Phys. 2013 Sep;114(9):094514.
  • Cheng Y, Nie Y, Wang X, et al. Adjustable low frequency and broadband metamaterial absorber based on magnetic rubber plate and cross resonator. J Appl Phys. 2014 Feb;115(6):064902.
  • Yuan W, Cheng Y. Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl Phys A. 2014 Dec;117(4):1915–1921.
  • Zhao J, Cheng Y. Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors. J Electron Mater. 2016 Oct;45(10):5033–5039.
  • Zeng X, Gao M, Zhang L, et al. Design of a triple-band metamaterial absorber using equivalent circuit model and interference theory. Microw Opt Technol Lett. 2018 Jul;60(7):1676–1681.
  • Liu T, Cao X, Gao J, et al. RCS reduction of waveguide slot antenna with metamaterial absorber. IEEE Trans Antennas Propag. 2013;61(3):1479–1484.
  • Li SJ, Gao J, Cao XY, et al. Loading metamaterial perfect absorber method for in-band radar cross section reduction based on the surface current distribution of array antennas. IET Microw Antennas Propag. 2014 Nov;9(5):399–406.
  • Gao J, Zhao Y, Liu T. A low RCS waveguide slot antenna array with metamaterial absorber. IEEE Trans Antennas Propag. 2015 May. doi:10.1109/TAP.2015.2431316
  • Ren J, Gong S, Jiang W. Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber. IEEE Antennas Wirel Propag Lett. 2018;17(1):102–104
  • Langley RJ, Parker EA. Double-square frequency-selective surfaces and their equivalent circuit. Electron Lett. 1983 Aug;19(17):675–677.
  • Langley RJ, Parker EA. Equivalent circuit model for arrays of square loops. Electron Lett. 1982 Apr;18(7):294–296.
  • Deng R, Li M, Muneer B, et al. Theoretical analysis and design of ultrathin broadband optically transparent microwave metamaterial absorbers. Materials. 2018;11(1):107.
  • Pozar DM. Microwave engineering. New York: John Wiley & Sons; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.