242
Views
51
CrossRef citations to date
0
Altmetric
Articles

Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials

, , , , &
Pages 1375-1390 | Received 02 Jan 2019, Accepted 14 Apr 2019, Published online: 26 Apr 2019

References

  • Shin J, Shen JT, Fan S. Three-dimensional metamaterials with an ultra-high effective refractive index over broad bandwidth. Phys Rev Lett. 2009;102:093903. doi: 10.1103/PhysRevLett.102.093903
  • Wang C, Yan C, Tian J, et al. Actively tunable metamaterial resonators based on colossal magnetoresistance in the infrared regime. Chin Opt Lett. 2015;13(5):051601. doi: 10.3788/COL201513.051601
  • Jing X, Gui X, Zhou P, et al. Physical explanation of Fabry–Pérot cavity for broadband bilayer metamaterials polarization converter. J Light Technol. 2018;36(12):2322–2327. doi: 10.1109/JLT.2018.2808339
  • Xia R, Jing X, Gui X, et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt Mater Express. 2017;7(3):977–988. doi: 10.1364/OME.7.000977
  • Gui X, Jing X, Hong Z. Ultrabroadband perfect reflectors by all-dielectric single-layer super cell metamaterial. IEEE Photonics Technol Lett. 2018;30(10):923–926. doi: 10.1109/LPT.2018.2825426
  • Jing X, Ye Q, Hong Z, et al. Design of ultrahigh refractive index metamaterials in the terahertz regime. Superlattices Microstruct. 2017;111:830–840. doi: 10.1016/j.spmi.2017.07.048
  • Bie X, Jing X, Hong Z, et al. Flexible control of transmitting terahertz beams based on multilayer encoding metasurfaces. Appl Opt. 2018;57(30):9070–9077. doi: 10.1364/AO.57.009070
  • Gui X, Jing X, Zhou P, et al. Terahertz multiband ultrahigh index metamaterials by bilayer metallic grating structure. Appl Phys B. 2018;124(4):68. doi: 10.1007/s00340-018-6939-4
  • Gui X, Jing X, Liu J, et al. Broadband polarization-independent two-dimensionally isotropic ultrahigh index metamaterials. Infrared Phys Technol. 2018;89:174–180. doi: 10.1016/j.infrared.2018.01.013
  • Zhao J, Jing X, Wang W, et al. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt Laser Technol. 2017;95:56–62. doi: 10.1016/j.optlastec.2017.04.001
  • Jing X, Gui X, Zhou P, et al. Ultrabroadband unnaturally high effective refractive index metamaterials in the terahertz region. IEEE Photonics J. 2017;9(1):5900107. doi: 10.1109/JPHOT.2016.2647558
  • Mian J, Zhu H, Zhu D, et al. Highly efficient anomalous reflection by ultrathin phase gradient planar meta-surface arrays in near infrared region. Optoelectron Adv Mater. 2017;11(3–4):148–152.
  • Peng YD, Zhang ZJ, Wang XQ, et al. Frequency and intensity readouts of micro-wave electric field using Rydberg atoms with Doppler effects. Opt Quant Electron. 2018;50(8):311. doi: 10.1007/s11082-018-1579-9
  • Ghasemi M, Baqir M, Choudhury PK. On the metasurface based comb filters. IEEE Photonics Technol Lett. 2016;28(10):1100–1103. doi: 10.1109/LPT.2016.2531102
  • Ghasemi M, Choudhury PK. Metamaterial absorber comprised of butt-facing U-shaped nanoengineered gold metasurface. Energies. 2016;9: 451. doi: 10.3390/en9060451
  • Ghasemi M, Choudhury PK. Nanostructured concentric gold ring resonator-basedmetasurface filter device. Optik. 2016;127:9932–9936. doi: 10.1016/j.ijleo.2016.07.048
  • Choi M, Lee SH, Kim Y, et al. A terahertz metamaterial with unnaturally high refractive index. Nature. 2011;470:369–373. doi: 10.1038/nature09776
  • Wei X, Shi H, Dong X, et al. A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures. Appl Phys Lett. 2010;97:011904. doi: 10.1063/1.3453477
  • Lu Z, et al. Terahertz metamaterials with dual band high refractive index. International Symposium on Electromagnetic Compatibility IEEE. 2012. p. 1–4.
  • Lee I S, Sohn I B, Kang C, et al. High refractive index metamaterials using corrugated metallic slots. Opt Express. 2017;25(6):6365–6371. doi: 10.1364/OE.25.006365
  • Mansfield SM, Kino GS. Solid immersion microscope. Appl Phys Lett. 1990;57:2615. doi: 10.1063/1.103828
  • Shumin D, Kildishev AV, Ni X, et al. Loss-free and active optical negative-index metamaterials. Nature. 2010;466(7307):735. doi: 10.1038/nature09278
  • Singh R, Singh W, Zhang W. Ultra-high terahertz index in deep subwavelength coupled bi-layer free-standing flexible metamaterials. J Appl Phys. 2017;121(23):2075–2329. doi: 10.1063/1.4985277
  • Shi Z, Boyd RW, Camacho RM, et al. Slow-light Fourier transform interferometer. Phys Rev Lett. 2007;99(24):240801. doi: 10.1103/PhysRevLett.99.240801
  • Liu R, Ji C, Mock JJ, et al. Broadband ground-plane cloak. Science. 2009;323(5912):366–369. doi: 10.1126/science.1166949
  • Sun S, Zhang C, Zhang H, et al. Enhancing magnetic dipole emission with magnetic metamaterials. Chin Opt Lett. 2018;16(5):050008. doi: 10.3788/COL201816.050008
  • Neira AD, Wurtz GA, Zayats AV. All-optical switching in silicon photonic waveguides with an epsilon-near-zero resonant cavity. Photonics Res. 2018;6(5):B1–B5. doi: 10.1364/PRJ.6.0000B1
  • Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives. Chin Opt Lett. 2018;16(5):050006. doi: 10.3788/COL201816.050006
  • Ghobadi A, Hajian H, Rashed AR, et al. Tuning the metal filling fraction in metal-insulator-metal ultra-broadband perfect absorbers to maximize the absorption bandwidth. Photonics Res. 2018;6(3):168–176. doi: 10.1364/PRJ.6.000168
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999;47(11):2075–2084. doi: 10.1109/22.798002
  • Scully MO. Enhancement of the index of refraction via quantum coherence. Phys Rev Lett.. 1991;67(14):1855. doi: 10.1103/PhysRevLett.67.1855
  • Sievenpiper DF, Yablonovitch E, Winn JN, et al. 3D metallo-dielectric photonic crystals with strong capacitive coupling between metallic islands. Phys Rev Lett. 1998;80(13):2829–2831. doi: 10.1103/PhysRevLett.80.2829
  • Wood B, Pendry JB. Metamaterials at zero frequency. J Phys Condens Matter. 2007;19:076208. doi: 10.1088/0953-8984/19/7/076208
  • Smith DR, Vier DC, Koschny T, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E. 2005;71:036617. doi: 10.1103/PhysRevE.71.036617
  • Kirchhoff G, Monatsber. Fluktuationen der 3K Mikrowellenstrahlung infolge Thomson-Streuung an bewegter intergalaktischer Materie. Dtsch Akad Wiss Berlin. 1877;144:453–458.
  • Sloggett GJ, Barton NG, Spencer SJ. Fringing fields in disc capacitors. J Phys A. 1986;19:2725. doi: 10.1088/0305-4470/19/14/012
  • Valentine J, Zhang S, Zentgraf T, et al. Three dimensional optical metamaterial exhibiting negative refractive index. Nature. 2008;455(7211):376–379. doi: 10.1038/nature07247
  • Wang J, Liu S, Guruswamy S, et al. Injection molding of free-standing, three-dimensional, all-metal terahertz metamaterials. Adv Optical Mater. 2014;2:663–669. doi: 10.1002/adom.201400094
  • Yan J, Guo Y, Pu M, et al. High-efficiency multi-wavelength metasurface with complete independent phase control. Chin Opt Lett. 2018;16(5):050003. doi: 10.3788/COL201816.050003
  • Valagiannopoulos C, Kovanis V. Engineering the emission of laser arrays to nullify the jamming from passive obstacles. Photonics Res. 2018;6(8):A43–A50. doi: 10.1364/PRJ.6.000A43
  • Rahimi E, Şendur K. Chimera states in plasmonic nanoresonators. Photonics Res. 2018;6(5):427–433. doi: 10.1364/PRJ.6.000427

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.