334
Views
8
CrossRef citations to date
0
Altmetric
Articles

A staggered double-vane slow-wave structure with double sheet electron beams for 340 GHz traveling wave tube

, , , , , & show all
Pages 1632-1643 | Received 20 Feb 2019, Accepted 22 May 2019, Published online: 02 Jun 2019

References

  • Dhillon SS, Vitiello MS, Linfield EH, et al. The 2017 terahertz science and technology roadmap. J Phys D Appl Phys. 2017;50(4):043001. doi: 10.1088/1361-6463/50/4/043001
  • Tian H, Shao W, Wang Z, et al. Design of W-band sheet beam travelling wave tubes based on staggered double vane slow wave structure. J Eng. 2018;2018(14):698–703.
  • Srivastava A, Christie VL. Design of a high gain and high efficiency W-band folded waveguide TWT using phase-velocity taper. J Electromagnet Wave Appl. 2018;32(10):1316–1327. doi: 10.1080/09205071.2018.1435309
  • Tahanian E, Dadashzadeh G. Gain analysis of the gap-groove folded-waveguide travelling-wave tube. J Electromagnet Wave Appl. 2017;31(4):363–374. doi: 10.1080/09205071.2017.1282328
  • Varshney AK, Guha R, Ghosh SK, et al. Gain-frequency response of a helix traveling-wave tube with T-shaped dielectric support rods in a metal envelope. J Electromagnet Wave Appl. 2016;30(5):566–578. doi: 10.1080/09205071.2015.1132639
  • Tahanian E, Dadashzadeh G. A novel gap-groove folded-waveguide slow-wave structure for G-band traveling-wave tube. IEEE Trans Electron Devices. 2016;63(7):2912–2918. doi: 10.1109/TED.2016.2564740
  • Billa LR, Akram MN, Chen X. H-plane and E-plane loaded rectangular slow-wave structure for terahertz TWT amplifier. IEEE Trans Electron Devices. 2016;63(4):1722–1727. doi: 10.1109/TED.2016.2527824
  • Shin Y-M, Barnett LR, Luhmann NC. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation. IEEE Trans Electron Devices. 2009;56(5):706–712. doi: 10.1109/TED.2009.2015404
  • Young-Min S, Barnett LR. Phase-shifted double vane circuit (Barnett-Shin TWT) for ultra-wideband millimeter and submillimeter wave generation; 2008. p. 54–55.
  • Shin Y-M, Barnett LR, Luhmann NC, Jr. Strongly confined plasmonic wave propagation through an ultrawideband staggered double grating waveguide. Appl Phys Lett. 2008;93(22):221504. doi: 10.1063/1.3041646
  • Shin Y-M, Barnett LR. Intense wideband terahertz amplification using phase shifted periodic electron-plasmon coupling. Appl Phys Lett. 2008;92(9):091501. doi: 10.1063/1.2883951
  • Bhattacharjee S, Booske JH, Kory CL, et al. Folded waveguide traveling-wave tube sources for terahertz radiation. IEEE Trans Plasma Sci. 2004;32(3):1002–1014. doi: 10.1109/TPS.2004.828886
  • Mineo M, Paoloni C. Corrugated rectangular waveguide tunable backward wave oscillator for terahertz applications. IEEE Trans Electron Devices. 2010;57(6):1481–1484. doi: 10.1109/TED.2010.2045678
  • Nashed AI, Chaudhuri SK, Safavi-Naeini S. A 650-GHz backward wave oscillator based on axial loaded double defected-photonic crystal SWS. IEEE Trans Plasma Sci. 2017;45(3):372–380. doi: 10.1109/TPS.2017.2655009
  • Xi H, Wang J, He Z, et al. Continuous-wave Y-band planar BWO with wide tunable bandwidth. Sci Rep. 2018;8(1):348. doi: 10.1038/s41598-017-18740-w
  • Xi H, He Z, Wang J, et al. A continuous-wave clinotron at 0.26 THz with sheet electron beam. Phys Plasmas. 2017;24(3):033105. doi: 10.1063/1.4977809
  • Billa LR, Shi X, Akram MN, et al. Improved design and microfabrication of H-plane and E-plane loaded rectangular slow-wave structure for THz TWT amplifier. IEEE Trans Electron Devices. 2017;64(5):2383–2389. doi: 10.1109/TED.2017.2683399
  • Ives RL. Microfabrication of high-frequency vacuum electron devices. IEEE Trans Plasma Sci. 2004;32(3):1277–1291. doi: 10.1109/TPS.2004.827595
  • Booske JH. New opportunities in vacuum electronics through the application of microfabrication technologies. Third IEEE International on Vacuum Electronics Conference, IVEC; 2002. p. 11–12.
  • Baig A, Gamzina D, Kimura T, et al. Performance of a nano-CNC machined 220-GHz traveling wave tube amplifier. IEEE Trans Electron Devices. 2017;64(5):2390–2397. doi: 10.1109/TED.2017.2682159
  • Pershing DE, Nguyen KT, Abe DK, et al. Demonstration of a wideband 10-kW Ka-band sheet beam TWT amplifier. IEEE Trans Electron Devices. 2014;61(6):1637–1642. doi: 10.1109/TED.2014.2304473
  • Borsuk GM, Levush B. PL-2: Vacuum electronics research perspective at the naval research laboratory. 2010 IEEE International on Vacuum Electronics Conference (IVEC); 2010. p. 3–4.
  • Shu G, Liu G, Qian Z. Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams. Opt Express. 2018;26(7):8040–8048. doi: 10.1364/OE.26.008040
  • Yan S, Su W, Xu A, et al. Analysis of multi-beam folded waveguide traveling-wave tube for terahertz radiation. J Electromagnet Wave Appl. 2015;29(4):436–447. doi: 10.1080/09205071.2014.992552
  • Shi X, Wang Z, Zhang Y, et al. An arbitrary staggered multi-vane traveling wave tube driven by double sheet electron beams. 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT); 2015. p. 1–3.
  • Lai J, Gong Y, Xu X, et al. W-band 1-kW staggered double-vane traveling-wave tube. IEEE Trans Electron Devices. 2012;59(2):496–503. doi: 10.1109/TED.2011.2174458
  • Ruan C, Zhang M, Dai J, et al. W-Band multiple beam staggered double-vane traveling wave tube with broad band and high output power. IEEE Trans Plasma Sci. 2015;43(7):2132–2139. doi: 10.1109/TPS.2015.2435160
  • Gee A, Shin Y-M. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure. Phys Plasmas. 2013;20(7):073106. doi: 10.1063/1.4813800
  • Shin Y-M. Superimposed coherent terahertz wave radiation from mono-energetically bunched multi-beam. Phys Plasmas. 2012;19(6):063115. doi: 10.1063/1.4731695
  • Zhao J, Gamzina D, Li N, et al. Scandate dispenser cathode fabrication for a high-aspect-ratio high-current-density sheet beam electron gun. IEEE Trans Electron Devices. 2012;59(6):1792–1798. doi: 10.1109/TED.2012.2190294
  • Zhao J, Gamzina D, Baig A, et al. Scandate-added tungsten dispenser cathode fabrication for 220 GHz sheet beam traveling wave tube amplifier. 2012 IEEE Thirteenth International on Vacuum Electronics Conference (IVEC); 2012. p. 47–48.
  • Zhao J, Li N, Li J, et al. High current density and long-life nanocomposite scandate dispenser cathode fabrication. IEEE Trans Electron Devices. 2011;58(4):1221–1228. doi: 10.1109/TED.2011.2109723
  • Zhao J, Gamzina D, Baig A, et al. Scandate dispenser cathode for 220 GHz 50 W sheet beam travelling wave tube amplifier. 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz); 2011. p. 1–2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.