211
Views
1
CrossRef citations to date
0
Altmetric
Articles

A planar strongly confined spoof surface plasmonic waveguide with compact cells

, &
Pages 1652-1659 | Received 11 Feb 2019, Accepted 29 May 2019, Published online: 09 Jun 2019

References

  • Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics. Nature. 2003;424:824–830. doi: 10.1038/nature01937
  • Gramotnev DK, Bozhevolnyi SI. Plasmonics beyond the diffraction limit. Nature Phot. 2010;4:83–91. doi: 10.1038/nphoton.2009.282
  • Cheng BH, Lan YC, Tsai DP. Breaking optical diffraction limitation using optical hybrid-super-hyperlens with radially polarized light. Opt Exp. 2013;21:14898–14906. doi: 10.1364/OE.21.014898
  • Ebbesen TW, Lezec HJ, Ghaemi HF, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature. 1998;391:667–669. doi: 10.1038/35570
  • Pendry JB, Martín-Moreno L, García-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science. 2004;305:847–848. doi: 10.1126/science.1098999
  • García-Vidal FJ, Martín-Moreno L, Pendry JB. Surface with holes in them: new plasmonic metamaterials. J Opt A Pure Appl Opt. 2005;7(2):S97–S101. doi: 10.1088/1464-4258/7/2/013
  • Hibbins AP, Evans BR, Sambles JR. Experimental verification of designer surface plasmons. Science. 2005;308(5722):670–672. doi: 10.1126/science.1109043
  • Akalin T, Treizebré A, Bocquet B. Single-wire transmission lines at terahertz frequencies. IEEE Trans Microw Theory Technol. 2006;54(6):2762–2767. doi: 10.1109/TMTT.2006.874890
  • Wang KW, Mittlemann DM. Metal wires for terahertz wave guiding. Nature. 2004;432:376–379. doi: 10.1038/nature03040
  • Williams CR, Andrews SR, Maier SA, et al. Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces. Nature Photon. 2008;2:175–179. doi: 10.1038/nphoton.2007.301
  • Chen SZ, Li YF, Ching YW. Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves. Opt Exp. 2007;14(26):13021–13029. doi: 10.1364/OE.14.013021
  • Martín-Cano D, Nesterov ML, Fernandez-Dominguez AI, et al. Domino plasmons for subwavelength terahertz circuitry. Opt Exp. 2010;18(2):754–764. doi: 10.1364/OE.18.000754
  • Martín-Cano D, Quevedo-Teruel O, Moreno E, et al. Waveguided spoof surface plasmons with deep-subwavelength lateral confinement. Opt Lett. 2011;36(23):4635–4637. doi: 10.1364/OL.36.004635
  • Shen X, Cui TJ, Martín-Cano D, et al. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Nat Acad Sci. 2013;110(1):40–45. doi: 10.1073/pnas.1210417110
  • Ye LF, Xiao YF, Liu YH, et al. Strongly confined spoof surface plasmon polaritons waveguiding enabled by planar staggered plasmonic waveguides. Sci Rep. 2016;6:38528. doi: 10.1038/srep38528
  • Meng Y, Xiang H, Zhang RY, et al. Topological interface states in multiscale spoof-insulator-spoof waveguides. Opt Lett. 2016;41(16):3698–3701. doi: 10.1364/OL.41.003698
  • Han C, Chu YY, Wang ZH, et al. Spoof surface plasmonic waveguide devices with compact length and low-loss. J Appl Phys. 2017;122(12):123301. doi: 10.1063/1.4997107
  • Zhou S, Lin JY, Wong SW, et al. Spoof surface plasmon polaritons power divider with large isolation. Sci Rep. 2018;8:5947. doi: 10.1038/s41598-018-24404-0
  • Farokhipour E, Komjani N, Chaychizadeh MA. An ultra-wideband three-way power divider based on spoof surface plasmon polaritons. J Appl Phys. 2018;124(23):235310. doi: 10.1063/1.5050495
  • Gao X, Zhou L, Liao Z, et al. An ultra-wideband surface plasmonic filter in microwave frequency. Appl Phys Lett. 2014;104(19):191603–191608. doi: 10.1063/1.4876962
  • Wang J, Zhao L, Hao ZC, et al. An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons. Appl Phys Lett. 2018;113(7):071101. doi: 10.1063/1.5045069
  • Guo YJ, Xu KD, Liu Y, et al. Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wide bandpass filter. IEEE Access. 2018;6:10249–10256. doi: 10.1109/ACCESS.2018.2808335
  • Gric T, Wartak MS, Cada M, et al. Spoof plasmons in corrugated semiconductors. J Electrom Waves Appl. 2015;29(14):1899–1907. doi: 10.1080/09205071.2015.1065772
  • Gric T. Spoof plasmons in corrugated transparent conducting oxides. J Electrom Waves Appl. 2016;30(6):721–727. doi: 10.1080/09205071.2016.1145076
  • Guan DF, You P, Zhang Q, et al. A wide-angle and circularly polarized beam-scanning antenna based on microstrip spoof surface plasmon polariton transmission line. IEEE Antennas Wireless Propag Lett. 2017;16:2538–2541. doi: 10.1109/LAWP.2017.2731877
  • Zhang HC, Liu S, Shen X, et al. Broadband amplification of spoof surface plasmon polaritons at microwave frequencies. Laser Photonics Rev. 2015;9(1):83–90. doi: 10.1002/lpor.201400131
  • Sondergaard T, Bozhevolnyi SI. Surface-plasmon polariton resonances in triangular-groove metal gratings. Phys Rev B. 2009;80(19):195407. doi: 10.1103/PhysRevB.80.195407
  • Fernandez-Dominguez AI, Moreno E, Martin-Moreno L, et al. Guiding terahertz waves along subwavelength channels. Phys Rev B. 2009;79(23):233104. doi: 10.1103/PhysRevB.79.233104
  • Xue Q, Shum KM, Chan CH. Novel 1-D microstrip PBG cells. IEEE Microw Guided Wave Lett. 2000;10(10):403–405. doi: 10.1109/75.877226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.