330
Views
20
CrossRef citations to date
0
Altmetric
Articles

A set square design metamaterial absorber for X-band applications

, &
Pages 1430-1443 | Received 23 Jun 2019, Accepted 07 Aug 2019, Published online: 20 Aug 2019

References

  • Veselago VG. Electrodynamics of substances with simultaneously negative and. Usp Fiz Nauk. 1967;92:517. Smith, David R and Padilla, Willie J and Vier, DC and Nemat-Nasser, Syrus C and Schultz, Seldon. doi: 10.3367/UFNr.0092.196707d.0517
  • Pendry JB, Holden AJ, Stewart WJ, et al. Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. 1996;76(25):4773. doi: 10.1103/PhysRevLett.76.4773
  • Pendry JB, Holden AJ, Robbins DJ, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech. 1999;47(11):2075–2084. doi: 10.1109/22.798002
  • Smith DR, Padilla WJ, Vier DC, et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett. 2000;84(18):4184. doi: 10.1103/PhysRevLett.84.4184
  • Wei X, Shi H, Dong X, et al. A high refractive index metamaterial at visible frequencies formed by stacked cut-wire plasmonic structures. Appl Phys Lett. 2010;97(1):011904. doi: 10.1063/1.3453477
  • Geng Z, Su W, Wang X, et al. Numerical design of a metasurface-based ultra-narrow band terahertz perfect absorber with high Q-factors. Optik. 2019;194:163071. doi: 10.1016/j.ijleo.2019.163071
  • Alù A, Engheta N. Dispersion characteristics of metamaterial cloaking structures. Electromagnetics. 2008;28(7):464–475. doi: 10.1080/02726340802322502
  • Ghasemi M, Choudhury PK. Nanostructured concentric gold ring resonator-based metasurface filter device. Optik. 2016;127(20):9932–9936. doi: 10.1016/j.ijleo.2016.07.048
  • Ghasemi M, Baqir MA, Choudhury PK. On the metasurface-based comb filters. IEEE Photonics Technol Lett. 2016;28(10):1100–1103. doi: 10.1109/LPT.2016.2531102
  • Barde C, Choubey A, Sinha R, et al. A novel ZOR-inspired patch antenna for vehicle mounting application. Ambient communications and computer systems. Singapore: Springer; 2019. p. 47–53.
  • Ranjan P, Choubey A, Mahto SK, et al. An ultrathin five-band polarization insensitive metamaterial absorber having hexagonal array of 2D-bravais-lattice. Progress Electrom Res. 2018;87:13–23. doi: 10.2528/PIERC18061907
  • Baqir MA, Ghasemi M, Choudhury PK, et al. Design and analysis of nanostructured subwavelength metamaterial absorber operating in the UV and visible spectral range. J Electrom Waves Appl. 2015;29(18):2408–2419. doi: 10.1080/09205071.2015.1073124
  • Ranjan P, Choubey A, Mahto SK. Wide-angle polarization independent multilayer microwave absorber using wind driven optimization technique. Int J Appl Eng Res. 2017;12(19):8016–8025.
  • Landy NI, Sajuyigbe S, Mock JJ, et al. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. doi: 10.1103/PhysRevLett.100.207402
  • Li H, Yuan LH, Zhou B, et al. Ultrathin multiband gigahertz metamaterial absorbers. J Appl Phys. 2011;110(1):014909.
  • Tao H, Bingham CM, Pilon D, et al. A dual band terahertz metamaterial absorber. J Phys D Appl Phys. 2010;43(22):225102. doi: 10.1088/0022-3727/43/22/225102
  • Ranjan P, Choubey A, Mahto SK, et al. A six-band ultra-thin polarization-insensitive pixelated metamaterial absorber using a novel binary wind driven optimization algorithm. J Electrom Waves Appl. 2018;32(18):2367–2385. doi: 10.1080/09205071.2018.1510344
  • Cheng YZ, Wang Y, Nie Y, et al. Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J Appl Phys. 2012;111(4):044902.
  • Smith VL. The two faces of Adam Smith. South Econ J. 1998;65:2–19. doi: 10.2307/1061349
  • Ghosh S, Bhattacharyya S, Kaiprath Y, et al. Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. J Appl Phys. 2014;115(10):104503.
  • Bhattacharyya S, Ghosh S, Srivastava KV. Bandwidth enhanced metamaterial absorber using electric field–driven LC resonator for airborne radar applications. Microw Opt Technol Lett. 2013;55(9):2131–2137. doi: 10.1002/mop.27786
  • Bhattacharyya S, Srivastava KV. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator. J Appl Phys. 2014;115(6):064508. doi: 10.1063/1.4865273
  • Sood D, Tripathi CC. A wideband wide-angle ultra-thin metamaterial microwave absorber. Progress Electrom Res. 2015;44:39–46. doi: 10.2528/PIERM15082903
  • Liu L, Zang Y, Zhai H, et al. Reconfigurable wideband metamaterial absorber with wide angle and polarisation stability. Electron Lett. 2015;51(21):1624–1626. doi: 10.1049/el.2015.1557
  • Zuo W, Yang Y, He X, et al. An ultrawideband miniaturized metamaterial absorber in the ultrahigh-frequency range. IEEE Antennas Wirel Propag Lett. 2016;16:928–931. doi: 10.1109/LAWP.2016.2614703
  • Mehta P, Alad R, Mittal S. A novel wideband metamaterial absorber for S, C & X band with good absorption. Kalpa Publ Eng. 2017;1:557–562. doi: 10.29007/tk5z
  • Bhattacharyya S, Ghosh S, Srivastava KV. Bandwidth enhanced metamaterial absorber using electric field–driven LC resonator for airborne radar applications. Microw Opt Technol Lett. 2013;55(9):2131–2137. doi: 10.1002/mop.27786

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.