60
Views
1
CrossRef citations to date
0
Altmetric
Articles

Impact of material characteristics on the general optical behavior of perforated surface plasmon system

, &
Pages 1372-1385 | Received 02 Jul 2019, Accepted 07 Aug 2019, Published online: 20 Aug 2019

References

  • Popov E, Enoch S, Bonod N. Absorption of light by extremely shallow metallic gratings: metamaterial behavior. Opt Express. 2009;17:6770–6781. doi: 10.1364/OE.17.006770
  • Ruan Z, Qiu M. Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett. 2006;96:233901. doi: 10.1103/PhysRevLett.96.233901
  • Zhang X, Liu G, Hu Y, et al. Enhanced optical transmission in a plasmonic nanostructure perforated with compound holes and nanorods. Opt Commun. 2014;325:105–110. doi: 10.1016/j.optcom.2014.04.015
  • Li WD, Hu J, Chou SY. Extraordinary light transmission through opaque thin metal film with subwavelength holes blocked by metal disks. Opt Express. 2011;19:21098–21108. doi: 10.1364/OE.19.021098
  • Behera G, Ramakrishna SA. Tri-layered composite plasmonic structure with a nanohole array for multiband enhanced absorption at visible to NIR frequencies: plasmonic and metamaterial resonances. J Phys D Appl Phys. 2016;49:075103. doi: 10.1088/0022-3727/49/7/075103
  • Naik GV, Shalaev VM, Boltasseva A. Alternative plasmonic materials: beyond gold and silver. Adv Mater. 2013;25:3264–3294. doi: 10.1002/adma.201205076
  • Lin JY, Zhong KD, Lee PT. Plasmonic behaviors of metallic AZO thin film and AZO nanodisk array. Opt Express. 2016;24:5125–5135. doi: 10.1364/OE.24.005125
  • Naik GV, Kim J, Boltasseva A. Oxides and nitrides as alternative plasmonic materials in the optical range. Opt Mater Express. 2011;1:1090–1099. doi: 10.1364/OME.1.001090
  • Naik GV, Schroeder JL, Ni X, et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express. 2012;2:478–489. doi: 10.1364/OME.2.000478
  • Kesim YE, Battal E, Okyay AK. Plasmonic materials based on ZnO films and their potential for developing broadband middle-infrared absorbers. AIP Adv. 2014;4:077106. doi: 10.1063/1.4887520
  • Kumar M, Ishii S, Umezawa N, et al. Band engineering of ternary metal nitride system Ti1-xZrxN for plasmonic applications. Opt Mater Express. 2016;6:29–38. doi: 10.1364/OME.6.000029
  • West PR, Ishii S, Naik GV, et al. Searching for better plasmonic materials. Laser Photon Rev. 2010;4:795–808. doi: 10.1002/lpor.200900055
  • Guler U, Naik GV, Boltasseva A, et al. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications. Appl Phys B. 2012;107:285–291. doi: 10.1007/s00340-012-4955-3
  • Djurišić AB, Li EH. Dielectric function models for describing the optical properties of hexagonal GaN. J Appl Phys. 2001;89:273–282. doi: 10.1063/1.1331069
  • Olmon RL, Slovick B, Johnson TW, et al. Optical dielectric function of gold. Phys Rev B. 2012;86:235147. doi: 10.1103/PhysRevB.86.235147
  • Dresselhaus MS. Solid state physics part ii optical properties of solids. 2001.
  • Kasap SO. Principles of electronic materials and devices. New York: McGraw-Hill; 2006.
  • Li Y. Plasmonic optics: theory and applications. Bellingham: SPIE Press; 2017.
  • Hao F, Nordlander P. Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles. Chem Phys Lett. 2007;446:115–118. doi: 10.1016/j.cplett.2007.08.027
  • Ehrenreich H, Philipp HR, Segall B. Optical properties of aluminum. Phys Rev. 1963;132:1918. doi: 10.1103/PhysRev.132.1918
  • Patsalas P, Kalfagiannis N, Kassavetis S. Optical properties and plasmonic performance of titanium nitride. Materials (Basel). 2015;8:3128–3154. doi: 10.3390/ma8063128
  • Rioux D, Vallières S, Besner S, et al. An analytic model for the dielectric function of Au, Ag, and their alloys. Adv Opt Mater. 2014;2:176–182. doi: 10.1002/adom.201300457
  • Song TT, Yang M, Chai JW, et al. The stability of aluminium oxide monolayer and its interface with two-dimensional materials. Sci Rep. 2016;6:29221. doi: 10.1038/srep29221
  • Yu Y, Yu Y, Cai Y, et al. Exciton-dominated dielectric function of atomically thin MoS 2 films. Sci Rep. 2015;5:16996. doi: 10.1038/srep16996
  • Wang H, Zheng Y, Cai MQ, et al. First-principles study on the electronic and optical properties of BiFeO3. Solid State Commun. 2009;149:641–644. doi: 10.1016/j.ssc.2009.01.023
  • Huang X, Leng T, Georgiou T, et al. Graphene oxide dielectric permittivity at GHz and its applications for wireless humidity sensing. Sci Rep. 2018;8:43. doi: 10.1038/s41598-017-16886-1
  • Azimirad R, Safa S, Bayani AH. CO gas opto-electronic sensor using semiconductor graphene nanoribbons: a first-principles study. Phys Status Solidi (b). 2016;253:559–565. doi: 10.1002/pssb.201552282
  • Jean-Mistral C, Sylvestre A, Basrour S, et al. Dielectric properties of polyacrylate thick films used in sensors and actuators. Smart Mater Struct. 2010;19:075019. doi: 10.1088/0964-1726/19/7/075019
  • Shabani A, Nezhad MK, Rahmani N, et al. Optical properties of Au-doped titanium nitride nanostructures: a Connection between density functional theory and finite-difference time-domain method. Plasmonics. 2019: 1–9. DOI:10.1007/s11468-019-00982-1.
  • Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans Antennas Propag. 1966;14:302–307. doi: 10.1109/TAP.1966.1138693
  • Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Norwood: Artech house; 2005.
  • Rakić AD, Djurišić AB, Elazar JM, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt. 1998;37:5271–5283. doi: 10.1364/AO.37.005271
  • Behera G, Ramakrishna SA. Enhanced broadband transmission through structured plasmonic thin films for transparent electrodes. J Nanophotonics. 2014;8:083889. doi: 10.1117/1.JNP.8.083889
  • Liu JQ, He MD, Zhai X, et al. Tailoring optical transmission via the arrangement of compound subwavelength hole arrays. Opt Express. 2009;17:1859–1864. doi: 10.1364/OE.17.001859
  • Liu Z, Liu G, Liu X, et al. Continuous copper film structures with broadband optical transparency. Mater Lett. 2015;139:12–14. doi: 10.1016/j.matlet.2014.10.025
  • Liu Z, Hang J, Chen J, et al. Optical transmission of corrugated metal films on a two-dimensional hetero-colloidal crystal. Opt Express. 2012;20:9215–9225. doi: 10.1364/OE.20.009215
  • Braun J, Gompf B, Kobiela G, et al. How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array. Phys Rev Lett. 2009;103:203901. doi: 10.1103/PhysRevLett.103.203901
  • Weiner J. The physics of light transmission through subwavelength apertures and aperture arrays. Rep Progr Phys. 2009;72:064401. doi: 10.1088/0034-4885/72/6/064401
  • Shabani A, Roknabadi MR, Behdani M, et al. Extraordinary optical transmission of periodic array of subwavelength holes within titanium nitride thin film. J Nanophotonics. 2017;11:036006. doi: 10.1117/1.JNP.11.036006
  • Zhang X, Liu G, Liu Z, et al. Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays. Opt Eng. 2014;53:107108. doi: 10.1117/1.OE.53.10.107108
  • Zhang X, Liu G, Hu Y, et al. Tunable extraordinary optical transmission in a metal film perforated with two-level subwavelength cylindrical holes. Plasmonics. 2014;9:1149–1153. doi: 10.1007/s11468-014-9725-0
  • Jin EX, Xu X. Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture. Appl Phys B. 2006;84:3–9. doi: 10.1007/s00340-006-2237-7
  • Wang Y, Qin Y, Zhang Z. Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays. Plasmonics. 2014;9:203–207. doi: 10.1007/s11468-013-9613-z
  • Pendry JB, Martin-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science. 2004;305:847–848. doi: 10.1126/science.1098999
  • Khurgin JB. Replacing noble metals with alternative materials in plasmonics and metamaterials: how good an idea? Philos Trans R Soc A Math Phys Eng Sci. 2017;375:20160068. doi: 10.1098/rsta.2016.0068

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.