109
Views
4
CrossRef citations to date
0
Altmetric
Articles

Illumination study of a quantum MIM diode for the mid-infrared

ORCID Icon & ORCID Icon
Pages 1955-1977 | Received 20 Apr 2019, Accepted 17 Aug 2019, Published online: 29 Aug 2019

References

  • Torrey H, Whitmer C, Goudsmit S. Crystal rectifiers. MIT radiation laboratory series. Vol. 15 in Crystal rectifiers. 1st ed. McGraw-Hill Book Company; 1948.
  • Iezekiel S, editor. Microwave photonics: devices and applications. Wiley – IEEE Press; 2009.
  • Dixon R, editor. Radio receiver design. Volume 104 of electrical and computer engineering. Boca Raton: CRC Press; 1998.
  • Saleh BEA, Teich MC. Fundamentals of photonics. Volume 32 of Wiley Series in pure and applied optics. 2nd ed. Wiley; 2007.
  • Osman O, Ucan ON. Contemporary coding techniques and applications for mobile communications. Boca Raton: CRC Press; 2009.
  • Rouvalis E, Chtioui M, van Dijk F, et al. 170 GHz uni-traveling carrier photodiodes for I nP-based photonic integrated circuits. Opt Express. 2012, Aug;20(18):20090–20095.
  • Peytavit E, Arscott S, Lippens D, et al. Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector. Appl Phys Lett. 2002;81(7):1174–1176.
  • Wehrspohn RB, Kitzerow H-S, Busch K, editors. Nanophotonic materials: photonic crystals, plasmonics, and metamaterials. New York: John Wiley & Sons; 2008.
  • Hale DDS. A thermal infrared heterodyne receiver with applications to astronomy. Technical report, Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA 94720; 2005.
  • Destefanis G, Tribolet P. Advanced MCT technologies in France. Technical report, CEA Leti-MINATEC, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France; 2013.
  • Cakmakyapan S, Lu PK, Navabi A. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light. 2018;7:1–9.
  • Mishra N, Boeckl J, Motta N, et al. The significance and challenges of direct growth of graphene on semiconductor surfaces. In: Motta N, Iacopi F, Coletti C, editors. Growing graphene on semiconductors. Singapore: Pan Stanford Publishing; 2017, Jun. p. 1–16.
  • Lingle Jr RL, Ge N-H, Jordan R, et al. Femtosecond studies of electron tunneling at metal–dielectric interfaces. Chem Phys. 1996;205(1–2):191–203. Surface reaction dynamics.
  • Nagae M. Response time of metal–insulator–metal tunnel junctions. Jpn J Appl Phys. 1972;11(11):1611.
  • Tucker JR, Feldman MJ. Quantum detection at millimeter wavelengths. Rev Mod Phys. 1985, Oct;57:1055–1113.
  • Finger G, Nicolini G. Comparison of Rockwell 1024×1024 MCT arrays science grade #2 and science grade #3. Technical report, European Southern Observatory; 1998.
  • Chen J, Tang C, Mao P, et al. Surface-plasmon-polaritons-assisted enhanced magnetic response at optical frequencies in metamaterials. IEEE Photon J. 2016, Feb;8(1):1–7.
  • Ikeda T, Kitamura T, Kishioka K. Coupled-mode analysis of plasmonic MIM waveguide coupled with a resonant cavity. Univers J Electr Electron Eng. 2015;3(3):85–89.
  • Moreno E, Sohrabi R, Klochok G, et al. Vertical versus planar pulsed photoconductive antennas that emit in the terahertz regime. Optik. 2018;166:257–269.
  • Nicoletti O, de la Pena F, Leary RK. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature. 2013: 80–83.
  • Veronis G, Kocaba SE, Miller DAB, et al. Modeling of plasmonic waveguide components and networks. J Comput Theor Nanosci. 2009;6(8):1808–1826.
  • Yang W, Fiddy MA. Surface plasmon excitation and non-zero induced surface current density. SOUTHEASTCON 2014, Lexington, KY, USA. IEEE; 2014, Mar. p. 1–4.
  • Zheng BY, Zhao H, Manjavacas A. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun. 2015;6:1–7.
  • Grover S, Dmitriyeva O, Estes M, et al. Traveling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans Nanotechnol. 2010, Nov;9(6):716–722.
  • Fumeaux C, Herrmann W, Kneubühl F, et al. Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30 THz radiation. Infrared Phys Technol. 1998;39(3):123–183.
  • Grover S, Moddel G. Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J Photovolt. 2011, Jul;1(1):78–83.
  • Kretschmann E, Raether H. Radiative decay of non-radiative surface plasmons excited by light. Naturforsch. 1968;23(12):2135–2136.
  • Geddes CD, editor. Reviews in plasmonics 2016. Baltimore (MD): Springer; 2017.
  • Hobbs PCD, Laibowitz RB, Libsch FR, et al. Efficient waveguide-integrated tunnel junction detectors at 1.6μm. Opt Express. 2007, Dec;15(25):16376–16389.
  • Matsuura S, Blake GA, Wyss RA, et al. A traveling-wave THz photomixer based on angle-tuned phase matching. Appl Phys Lett. 1999;74(19):2872–2874.
  • Michael EA. Travelling-wave photonic mixers for increased continuous-wave power beyond 1 THz. Semicond Sci Technol. 2005, Jun;20(7):S164–S177.
  • Michael EA, Vowinkel B, Schieder R, et al. Large-area traveling-wave photonic mixers for increased continuous terahertz power. Appl Phys Lett. 2005;86(11):111120.
  • Çapoğlu IR, Taflove A, Backman V. Generation of an incident focused light pulse in FDTD. Opt Express. 2008, Nov;16(23):19208–19220.
  • Zhang D, Capoglu IR. Angora: a free finite-difference time-domain (FDTD) electromagnetic simulation package. Available from http://www.angorafdtd.org/
  • Taflove A, Oskooi A, Johnson SG, editors. Advances in FDTD computational electrodynamics: photonics and nanotechnology. Artech house antennas and propagation library; 2013.
  • Tan T, Potter M. On the nature of numerical plane waves in FDTD. IEEE Antennas Wirel Propag Lett. 2009;8:505–508.
  • Tan T, Potter M. FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations. IEEE Trans Antennas Propag. 2010, Aug;58(8):2641–2648.
  • Angora: a free finite-difference time-domain (FDTD) electromagnetic simulation package. Available from http://www.angorafdtd.org/
  • Additional material: available from https://drive.google.com/file/d/12nFxxkFk2aujU7xGygW7-YwUmfBNh3AJ/view?usp=sharing
  • BD-2 Glass Datasheet (revision 2013-05). Available from https://refractiveindex.info/download/data/2013/BD-2.pdf
  • Rakić AD, Djurišić AB, Elazar JM, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt. 1998, Aug;37(22):5271–5283.
  • Kischkat J, Peters S, Gruska B, et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl Opt. 2012, Oct;51(28):6789–6798.
  • Han M, Dutton RW, Fan S. Model dispersive media in finite-difference time-domain method with complex-conjugate pole-residue pairs. IEEE Microw Wirel Compon Lett. 2006, Mar;16(3):119–121.
  • Ahmed I, Khoo EH, Kurniawan O, et al. Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model. J Opt Soc Am B. 2011, Mar;28(3):352–359.
  • Deschrijver D, Mrozowski M, Dhaene T, et al. Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microw Wirel Compon Lett. 2008, Jun;18(6):383–385.
  • Gustavsen B. Improving the pole relocating properties of vector fitting. IEEE Trans Power Del. 2006, Jul;21(3):1587–1592.
  • Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power Del. 1999, Jul;14(3):1052–1061.
  • Sumo lab. Available from http://sumo.intec.ugent.be/vectfit3.
  • Taflove A, Hagness SC. Computational electrodynamics: the finite-difference time-domain method. Artech House antennas and propagation library; 2005.
  • Lei X, Van V. FDTD modeling of traveling-wave MIM diode for ultrafast pulse detection. Opt Commun. 2013;294:344–350.
  • Moreno E. Discretization details at interfaces for ade-fdtd numerical simulation of the illumination study of a quantum mim diode for the mid-infrared [cited 2019]. Available from https://drive.google.com/file/d/1MnSYQiRgVV0xQR2cYuCfL_9uYCDYSPCP/view?usp=sharing.
  • Maraghechi P, Foroughi-Abari A, Cadien K. Enhanced rectifying response from metal–insulator–insulator–metal junctions. Appl Phys Lett. 2011;99:25–30.
  • Maraghechi P, Foroughi-Abari A, Cadien K. Observation of resonant tunneling phenomenon in metal–insulator–insulator–insulator–metal electron tunnel devices. Appl Phys Lett. 2012;2:321–325.
  • Simmons JG. Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J Appl Phys. 1963;34(6):1793–1803.
  • Choi KK. The physics of quantum well infrared photodetectors. Volume 7 of Series in modern condensed matter physics, Volume 7 of Series on advances in mathematics for applied sciences. World Scientific; 1997.
  • Miller CW, Li Z-P, Åkerman J, et al. Impact of interfacial roughness on tunneling conductance and extracted barrier parameters. Appl Phys Lett. 2007;90(4):043513.
  • Bardou F. Rare events in quantum tunneling. Europhys Lett (EPL). 1997, Jul;39(3):239–244.
  • Alimardani N, Conley JF. Step tunneling enhanced asymmetry in asymmetric electrode metal–insulator–insulator–metal tunnel diodes. Appl Phys Lett. 2013;102(14):143501.
  • Cimpoiasu E, Tolpygo SK, Liu X, et al. Aluminum oxide layers as possible components for layered tunnel barriers. J Appl Phys. 2004;96(2):1088–1093.
  • Costa VD, Romeo M, Bardou F. Statistical properties of currents flowing through tunnel junctions. J Magn Magn Mater. 2003;258–259:90–95. Second Moscow international symposium on magnetism.
  • Da Costa V, Henry Y, Bardou F, et al. Experimental evidence and consequences of rare events in quantum tunneling. Eur Phys J B. 2000;13(2):297–303.
  • Lai Y-R, Yu K-F, Lin Y-H, et al. Observation of fluctuation-induced tunneling conduction in micrometer-sized tunnel junctions. AIP Adv. 2012;2(3):032155.
  • Gloos K, Koppinen PJ, Pekola JP. Properties of native ultrathin aluminium oxide tunnel barriers. J Phys. 2003, Mar;15(10):1733–1746.
  • Schaefer DM, Fichtner PFP, Carara M, et al. Dielectric breakdown in AlOx tunnelling barriers. J Phys D. 2011, Mar;44(13):135403.
  • Grover S, Moddel G. Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers. Solid State Electron. 2012;67(1):94–99.
  • Chartrand R. Numerical differentiation of noisy, nonsmooth data. ISRN Appl Math. 2011;2011:Article ID 164564. DOI:10.5402/2011/164564.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.