98
Views
2
CrossRef citations to date
0
Altmetric
Articles

Doppler spectra of electromagnetic wave scattered from an object flying above time-varying nonlinear sea surfaces

, , , &
Pages 2175-2198 | Received 13 Jun 2019, Accepted 23 Sep 2019, Published online: 09 Oct 2019

References

  • Alpers W, Mouche A, Horstmann J, et al. Application of a new algorithm using Doppler information to retrieve complex wind fields over the Black Sea from ENVISAT SAR images. Int J Remote Sens. 2015;36(3):863–881.
  • Hwang PA, Sletten MA, Toporkov JV. A note on Doppler processing of coherent radar backscatter from the water surface: With application to ocean surface wave measurements. J Geophys Res. 2010;115(C03026).
  • Brau N, Ziemer F, Bezuglov A, et al. Sea-surface current features observed by Doppler radar. IEEE Trans Geosci Remote Sensing. 2008;46(4):1125–1133.
  • Fois F, Hoogeboom P, Le Chevalier F, et al. DopSCAT: A mission concept for simultaneous measurements of marine winds and surface currents. J Geophys Res. 2015;120(12):7857–7879.
  • Liu P, Jin YQ. Numerical simulation of the Doppler spectrum of a flying target above dynamic oceanic surface by using the FEM-DDM method. IEEE Trans Antennas Propag. 2005;53(2):825–832.
  • Qi CH, Zhao ZQ, Nie ZP. Numerical approach on Doppler spectrum analysis for moving targets above a time-evolving sea surface. Prog Electromagn Res. 2013;138:351–365.
  • Crombie DD. Doppler spectrum of Sea Echo at 13.56 Mc./s. Nature. 1955;175(4459):681–682.
  • Lee PHY, Barter JD, Beach KL, et al. X band microwave backscattering from ocean waves. J Geophys Res. 1995;100(C2):2591–2611.
  • Zavorotny VU, Voronovich AG. Two-scale model and ocean radar Doppler spectra at moderate-and low-grazing angles. IEEE Trans Antennas Propag. 1998;46(1):84–92.
  • Soriano G, Joelson M, Saillard M. Doppler spectra from a two-dimensional ocean surface at L-band. IEEE Trans Geosci Remote Sensing. 2006;44(9):2430–2437.
  • Yurovsky YY, Kudryavtsev VN, Chapron B, et al. Modulation of Ka-band Doppler radar signals backscattered from the sea surface. IEEE Transactions on Geoscience and Remote Sensing. 2018;56(5):2931–2948.
  • Wang Y, Zhang Y, Li H, et al. Doppler spectrum of microwave SAR signals from two-dimensional time-varying sea surface. J Electromagn Waves Appl. 2016,30(10):1265–1276.
  • Toporkov JV, Brown GS. Numerical simulations of scattering from time-varying, randomly rough surfaces. IEEE Trans Geosci Remote Sensing. 2000;38(4):1616–1625.
  • Hayslip AR, Johnson JT, Baker GR. Further numerical studies of backscattering from time-evolving nonlinear sea surfaces. IEEE Trans Geosci Remote Sensing. 2003;41(10):2287–2293.
  • Wang JN, Xu XJ. Doppler simulation and analysis for 2-D sea uurfaces up to Ku-band. IEEE Trans Geosci Remote Sensing. 2016;54(1):466–478.
  • Miret D, Soriano G, Nouguier F, et al. Sea surface microwave scattering at extreme grazing angle: numerical investigation of the Doppler shift. IEEE Trans Geosci Remote Sensing. 2014;52(11):7120–7129.
  • Nouguier F, Guérin C-A, Soriano G. Analytical techniques for the Doppler signature of sea surfaces in the microwave regime-II: nonlinear surfaces. IEEE Trans Geosci Remote Sensing. 2011;49(12):4920–4927.
  • Yang PJ, Guo LX. Doppler spectrum of polarimetric scattering field from two-dimensional time-varying nonlinear sea surfaces. Waves Random Complex Media. 2016;26(4):516–534.
  • Zhao Y, Zhang M, Chen H, et al. Radar scattering from the composite ship-ocean scene: Doppler spectrum analysis based on the motion of six degrees of freedom. IEEE Trans Antennas Propag. 2014;62(8):4341–4347.
  • Pino MR, Landesa L, Rodríguez JL, et al. The generalized forward-backward method for analyzing the scattering from targets on ocean-like rough surfaces. IEEE Trans Antennas Propag. 1999;47(6):961–969.
  • Liang Y, Guo LX, Wu ZS. The fast EPILE combined with FBM for electromagnetic scattering from dielectric targets above and below the dielectric rough surface. IEEE Trans Geosci Remote Sensing. 2011;49(10):3892–3905.
  • Bourlier C, Kubické G, Déchamps N. Fast method to compute scattering by a buried object under a randomly rough surface: PILE combined with FB-SA. J Opt Soc Am A. 2008;25(4):891–902.
  • Tian W, We B, He X-B. A novel domain decomposition-finite difference time domain method for composite scattering from a target above rough surface. Waves Random Complex Media. 2019.
  • Zhao Y, Yuan XF, Zhang M, et al. Radar scattering from the composite ship-ocean scene: facet-based asymptotical model and specular reflection weighted model. IEEE Trans Antennas Propag. 2014;62(9):4810–4815.
  • Zhao H, Guo L, Chen T, et al. Electromagnetic scattering of coated objects over sea surface based on SBR-SDFSM. J Electromagn Waves Appl. 2018;32(9):1079–1092.
  • Tian G, Ming Tong C, Liu H, et al. An improved MoM-PO hybrid method for scattering from multiple 3-D objects above the 2-D random conducting rough surface. Electromagnetics. 2019;39(5):375–392.
  • Ye HX, Jin YQ. A hybrid analytic-numerical algorithm of scattering from an object above a rough surface. IEEE Trans Geosci Remote Sensing. 2007;45(5):1174–1180.
  • He SY, Zhu GQ. A hybrid MM-PO method combining UV technique for scattering from two-dimensional target above a rough surface. Microw Opt Technol Lett. 2007;49(12):2957–2960.
  • Kubické G, Bourlier C. A fast hybrid method for scattering from a large object with dihedral effects above a large rough surface. IEEE Trans Antennas Propag. 2011;59(1):189–198.
  • Rashidi-Ranjbar E, Dehmollaian M. Target above random rough surface scattering using a parallelized IPO accelerated by MLFMM. IEEE Geosci Remote Sens Lett. 2015;12(7):1481–1485.
  • Thorsos EI. Acoustic scattering from a “Pierson-Moskowitz” sea surface. J Acoust Soc Am. 1990;88(1):335–349.
  • Wang YH, Zhang YM, He MX, et al. Doppler spectra of microwave scattering fields from nonlinear oceanic surface at moderate- and low-grazing angles. IEEE Trans Geosci Remote Sensing. 2012;50(4):1104–1116.
  • Nouguier F, Guérin C-A, Chapron B. “Choppy wave” model for nonlinear gravity waves. J Geophys Res. 2009;114(C9):C09012.
  • Fois F, Hoogeboom P, Chevalier FL, et al. An analytical model for the description of the full-polarimetric sea surface Doppler signature. J Geophys Res. 2015;120(2):988–1015.
  • Tsang L, Kong JA, Ding KH. Scattering of electromagnetic waves: theories and applications. 1st ed. Vol. 1. New York: Wiley-Interscience; 2000.
  • Kong JA. Electromagnetic wave theory. New York: Wiley; 1986.
  • Tsang L, Kong JA. Scattering of electromagnetic waves: Advanced Topics. Vol. 3. New York: Wiley-Interscience; 2001.
  • Harrington RF. Field computation by Moment methods. New York: Wiley-Interscience; 1993.
  • Thorsos EI. The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. J Acoust Soc Am. 1988;83(1):78–92.
  • Ye HX, Jin YQ. Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface. IEEE Trans Antennas Propag. 2005;53(3):1234–1237.
  • Stogryn A. Equations for calculating the dielectric constant of saline water. IEEE Trans Microw Theory Tech. 1971;19(8):733–736.
  • Plant WJ. A model for microwave Doppler sea return at high incidence angles: Bragg scattering from bound, tilted waves. J Geophys Res. 1997;102(C9):21131–21146.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.