96
Views
5
CrossRef citations to date
0
Altmetric
Articles

Tunable and large plasmonic field enhancement in core-shell heterodimer/trimer

, &
Pages 2423-2433 | Received 17 Jul 2019, Accepted 17 Oct 2019, Published online: 30 Oct 2019

References

  • Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev. 2011;112(4):2373–2433.
  • Brown LV, Sobhani H, Lassiter JB, et al. Heterodimers: plasmonic properties of mismatched nanoparticle pairs. ACS Nano. 2010;4(2):819–832.
  • Li JN, Liu TZ, Zheng HR, et al. Plasmon resonances and strong electric field enhancements in side-by-side tangent nanospheroid homodimers. Opt Express. 2013;21(14):17176–85.
  • Talley CE, Jackson JB, Oubre C, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005;5(8):1569–1574.
  • Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys. 2004;120(1):357–366.
  • Halas NJ, Lal S, Chang WS, et al. Plasmons in strongly coupled metallic nanostructures. Chem Rev. 2011;111(6):3913–3961.
  • Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers. Nano Lett. 2004;4(5):899–903.
  • Toroghi S, Lumdee C, Kik PG. Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement. In: Plasmonics: Metallic Nanostructures and Their Optical Properties XI. Vol. 8809. International Society for Optics and Photonics; 2013. p. 88091M.
  • Pea-Rodrguez O, Pal U, Campoy-Quiles M, et al. Enhanced Fano resonance in asymmetrical Au: Ag heterodimers. J Phys Chem C. 2011;115(14):6410–6414.
  • Tian X, Fang Y, Zhang B. Multipolar Fano resonances and Fano-assisted optical activity in silver nanorice heterodimers. ACS Photon. 2014;1(11):1156–1164.
  • Sheikholeslami S, Jun YW, Jain PK, et al. Coupling of optical resonances in a compositionally asymmetric plasmonic nanoparticle dimer. Nano Lett. 2010;10(7):2655–2660.
  • Oubre C, Nordlander P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J Phys Chem B. 2004;108(46):17740–17747.
  • Prodan E, Nordlander PJ. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 2003;3(4):543–547.
  • Burns A, Sengupta P, Zedayko T, et al. Core/shell fluorescent silica nanoparticles for chemical sensing: towards single particle laboratories. Small. 2006;2(6):723–726.
  • He F, Zhao D. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol. 2005;39(9):3314–3320.
  • Kim J, Kim HS, Lee N, et al. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed. 2008;47(44):8438–8441.
  • Ansari AA, Hasan TN, Syed NA, et al. In-vitro cyto-toxicity, geno-toxicity, and bio-imaging evaluation of one-pot synthesized luminescent functionalized mesoporous SiO2@ Eu (OH) 3 core-shell microspheres. Nanomedicine. 2013;9(8):1328–1335.
  • Chen S, Li X, Zhao Y, et al. Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering. Carbon. 2015;81:767–772.
  • Wang X, Hu Y, Wei H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front. 2016;3(1):41–60.
  • Stockman MI. Nanoplasmonics: the physics behind the applications. Phys Today. 2011;64(2):39–44.
  • Weber WH, Ford GW. Optical electric-field enhancement at a metal surface arising from surface-plasmon excitation. Opt Lett. 1981;6(3):122–124.
  • Butterfield IM, Christensen PA, Curtis TP, et al. Water disinfection using an immobilised titanium dioxide film in a photochemical reactor with electric field enhancement. Water Res. 1997;31(3):675–677.
  • Bouhelier A, Beversluis M, Hartschuh A, et al. Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett. 2003;90(1):013903.
  • Berini P. Surface plasmon photodetectors and their applications. Laser Photonics Rev. 2014;8(2):197–220.
  • Narimatsu M, Kita S, Abe H, et al. Enhancement of vertical emission in photonic crystal nanolasers. Appl Phys Lett. 2012;100(12):121117.
  • Kabashin AV, Evans P, Pastkovsky S, et al. Plasmonic nanorod metamaterials for biosensing. Materials¡/DIFdel¿Nat Mater. 2009;8(11):867–871.
  • Wang L, Clavero C, Huba Z, et al. Plasmonics and enhanced magneto-optics in core shell Co Ag nanoparticles. Nano Lett. 2011;11(3):1237–1240.
  • Maier SA, Brongersma ML, Kik PG, et al. Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys Rev B. 2002;65(19):193408.
  • Rayleigh LXXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Lond Edinb Dubl Phil Mag J Sci. 1899;47(287):375–384.
  • Rahaman MH, Kemp BA. Analytical model of plasmonic resonance from multiple core-shell nanoparticles. Opt Eng. 2017;56(12):121903.
  • Mie G. Beitrge zur Optik trber Medien, speziell kolloidaler Metallsungen. Ann Phys. 1908;330(3):377–445.
  • Rahaman MH, Kemp BA. Revisiting Mies scattering theory for the analysis of the plasmonic resonance of metal nanospheres. J Electromagnet Waves Appl. 2016;30(16):2088–2098.
  • Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev B. 1972;6(12):4370–4379.
  • Rahaman MH, Kemp BA. Negative force on free carriers in positive index nanoparticles. APL Photon. 2017;2(10):101301.
  • Foldy LL. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Phys Rev. 1945;67(3-4):107.
  • Lax PD, Phillips RS. Scattering theory. Boston: Academic Press; 1990.
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Boston: John Wiley & Sons; 2008.
  • Sihvola AH. Electromagnetic mixing formulas and applications. London: IET; 1999.
  • Rahaman MH, Kemp BA. A study of plasmonic field enhancement in bimetallic and active core-shell nanoparticles/nanorods. In: SoutheastCon 2017. IEEE; 2017 Mar 30. p. 1–6.
  • Rahaman MH, Nazim MS, Kemp BA. Radiation pressure on core-shell nanoparticles in Rayleigh regime. In: SoutheastCon 2017. IEEE; 2017 Mar 30. p. 1–6.
  • Grzegorczyk TM, Kemp BA, Kong JA. Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field. JOSA A. 2006;23(9):2324–30.
  • Rahaman MH. Theory and applications of plasmonically active spherical and core-shell nanoparticles. Jonesboro: Arkansas State University; 2017.
  • Tsang L, Kong JA, Ding KH. Scattering of electromagnetic waves: numerical simulations. New York: John Wiley & Sons; 2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.