199
Views
6
CrossRef citations to date
0
Altmetric
Articles

Investigation of the plasmon resonance of core-shell nanoparticle in the near-infrared region

, &
Pages 2462-2475 | Received 20 May 2019, Accepted 21 Oct 2019, Published online: 06 Nov 2019

References

  • Kamp BA, Rahaman MH. Analytical model of plasmonic resonance from multiple core-shell nanoparticles. Opt Eng. 2017;56:121903. doi: 10.1117/1.OE.56.12.121903
  • Atwater HA, Polman A. Plasmonics for improved photovoltaic devices. Nat Mater. 2010;9:205. doi: 10.1038/nmat2629
  • Meng Z, Cao H, Zhou D, et al. Ultradirectional optical nanoantennas with high radiation efficiency by core-shell nanoparticles. J Nanophotonics. 2017;11:016005. doi: 10.1117/1.JNP.11.016005
  • Tsuchimoto Y, Yano T-a, Hayashi T, et al. Fano resonant all-dielectric core/shell nanoparticles with ultra-high scattering directionality in the visible region. Opt Express. 2016;24:14451–14462. doi: 10.1364/OE.24.014451
  • Feng HY, Luo F, Meneses-Rodríguez D, et al. From disk to ring: aspect ratio control of the magnetoplasmonic response in Au/Co/Au nanostructures fabricated by hole-mask colloidal lithography. Appl Phys Lett. 2015;106:083105. doi: 10.1063/1.4913621
  • Avasthi D, Mishra Y, Singhal R, et al. Synthesis of plasmonic nanocomposites for diverse applications. J Nanosci Nanotechnol. 2010;10:2705–2712. doi: 10.1166/jnn.2010.1433
  • Zayats AV, Smolyaninov II. Near-field photonics: surface plasmon polaritons and localized surface plasmons. J Opt A: Pure Appl Opt. 2003;5:S16. doi: 10.1088/1464-4258/5/4/353
  • Li Y, Wan M, Wu W, et al. Broadband zero-backward and near-zero-forward scattering by metallo-dielectric core-shell nanoparticles. Sci Reports. 2015;5:12491. doi: 10.1038/srep12491
  • Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Materials. 2011;10:911. doi: 10.1038/nmat3151
  • Wang L, Yang K, Clavero C, et al. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe–Ag nanoparticles. J Appl Phys. 2010;107:09B303. doi: 10.1063/1.3355905
  • Li W, Camargo PH, Au L, et al. Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angewandte Chemie. 2010;122:168–172. doi: 10.1002/ange.200905245
  • Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. In: Nanoscience and technology: a collection of reviews from nature journals. Singapore: World Scientific; 2010. p. 308–319.
  • Verbruggen SW, Keulemans M, Martens JA, et al. Predicting the surface plasmon resonance wavelength of gold–silver alloy nanoparticles. The J Phys Chem C. 2013;117:19142–19145. doi: 10.1021/jp4070856
  • Liong M, Angelos S, Choi E, et al. Mesostructured multifunctional nanoparticles for imaging and drug delivery. J Mater Chem. 2009;19:6251–6257. doi: 10.1039/b902462j
  • Radziuk D, Moehwald H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys Chem Phys. 2015;17:21072–21093. doi: 10.1039/C4CP04946B
  • Nejad HE, Mir A, Farmani A. Supersensitive and tunable nano-biosensor for cancer detection. IEEE Sensors J. 2019;19:4874–4881. doi: 10.1109/JSEN.2019.2899886
  • Baqir MA, Farmani A, Fatima T, et al. Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl Optics. 2018;57:9447–9454. doi: 10.1364/AO.57.009447
  • Baqir MA, Choudhury PK. Hyperbolic metamaterial-based UV absorber. IEEE PTL. 2017;29:1548–1551. doi: 10.1109/LPT.2017.2735453
  • Baqir MA, Choudhury PK. Design of hyperbolic metamaterial-based absorber comprised of Ti nanospheres. IEEE Phot Tech Lett. 2019;31:735–738. doi: 10.1109/LPT.2019.2906323
  • Tominaga J, Tsai DP. Optical nanotechnologies: The manipulation of surface and local plasmons, vol. 88. New York City, NY: Springer Science & Business Media; 2003.
  • Challener WA, Mcdaniel TW, Mihalcea CD, et al. Light delivery techniques for heat-assisted magnetic recording. JPN J Appl Phys. 2003;42:981. doi: 10.1143/JJAP.42.981
  • Gerislioglu B, Ahmadivand A, Pala N. Optothermally controlled charge transfer plasmons in Au-Ge2Sb2Te5 core-shell assemblies. arXiv preprint arXiv:1712.01092. 2017.
  • Mohapatra S, Mishra Y, Avasthi D, et al. Synthesis of gold-silicon core-shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett. 2008;92:103105. doi: 10.1063/1.2894187
  • Purushotham S, Chang P, Rumpel H, et al. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Nanotechnology. 2009;20:305101. doi: 10.1088/0957-4484/20/30/305101
  • Jaiswal JK, Mattoussi H, Mauro JM, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnology. 2003;21:47. doi: 10.1038/nbt767
  • Medintz IL, Uyeda HT, Goldman ER, et al. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Materials. 2005;4:435. doi: 10.1038/nmat1390
  • Li R, Zhou X, Panmai M, et al. Broadband zero backward scattering by all-dielectric core-shell nanoparticles. Opt Express. 2018;26:28891–28901. doi: 10.1364/OE.26.028891
  • Huang D, Yang L, Cao H, et al. Unidirectional optical nanoantenna with individual core– dual shells nanoparticle. J Nanophotonics. 2018;12:046005. doi: 10.1117/1.JNP.12.046005
  • Kallempudi SS, Gurbuz Y. A nanostructured-nickel based interdigitated capacitive transducer for biosensor applications. Sensors Actuators B: Chem. 2011;160:891–898. doi: 10.1016/j.snb.2011.08.078
  • Baqir MA. Wide-band and wide-angle, visible- and near-infrared metamaterial-based absorber made of nanoholed tungsten thin film. Opt Mater Express. 2019;9:2358–2367. doi: 10.1364/OME.9.002358
  • Baqir MA, Choudhury PK, Mughal M. Gold nanowires-based hyperbolic metamaterial multiband absorber operating in the visible and near-infrared regimes. Plasmonics. 2019;14:485–492. doi: 10.1007/s11468-018-0826-z
  • Sadecka K, Toudert J, Surma HB, et al. Temperature and atmosphere tunability of the nanoplasmonic resonance of a volumetric eutectic-based Bi2O3-Ag metamaterial. Opt Express. 2015;23:19098–19111. doi: 10.1364/OE.23.019098
  • Sasanpour P, Rashidian B, Rashidian B, et al. Novel method for cancer cell apoptosis by localized UV light with gold nanostructures: a theoretical investigation. Nano. 2010;5:325–332. doi: 10.1142/S1793292010002232
  • Mie G. Beiträge zur optik trüber medien, speziell kol-loidaler metallösungen. Ann Phys. 1908;330:377–445. doi: 10.1002/andp.19083300302
  • Sihvola AH. Electromagnetic mixing formulas and applications, 47. London: Savoy Place; 1999.
  • Sihvola AH. Character of surface plasmons in layered spherical structures. Prog In Electromagn Res. 2006;62:317–331. doi: 10.2528/PIER06042801
  • Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim: John Wiley; 2008.
  • Rakíc AD. Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl Optics. 1995;34:4755–4767. doi: 10.1364/AO.34.004755
  • Markovic MI, Rakic AD. Determination of the reflection coefficients of laser light of wavelengths lambda (0.22 mm, 200 mm) from the surface of aluminum using the lorentz-drude model. Appl Optics. 1990;29:3479–3483. doi: 10.1364/AO.29.003479
  • Rakíc AD, Djurišíc AB, Elazar JM, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Optics. 1998;37:5271–5283. doi: 10.1364/AO.37.005271
  • Rahaman MH, Kemp BA. Revisiting mie’s scattering theory for the analysis of the plasmonic resonance of metal nanospheres. J Electromagn Waves Appl. 2016;30:2088–2098. doi: 10.1080/09205071.2016.1231089
  • Tam F, Chen AL, Kundu J, et al. Mesoscopic nanoshells: geometry-dependent plasmon resonances beyond the quasistatic limit. J Chem Phys. 2007;127:204703. doi: 10.1063/1.2796169
  • Pattak NK, Senthil Kumar P, Sharma RP. Tuning of surface plasmon resonance of aluminum nanoshell near-infrared regimes. Phys Chem Chem Phys. 2019;21:9441–9449. doi: 10.1039/C9CP01115C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.