194
Views
1
CrossRef citations to date
0
Altmetric
Articles

Synthesis of pattern reconfigurable sparse arrays via sequential convex optimizations for monopulse radar applications

ORCID Icon, , , &
Pages 183-200 | Received 19 Jun 2019, Accepted 10 Nov 2019, Published online: 24 Nov 2019

References

  • Ares F, Vieiro A, Moreno E, et al. Optimization of aperture distributions for difference patterns. J Electromag Waves Appl. 1996;10(3):383–402.
  • Rodriguez JA, Ares F. Optimal compromise between sum and difference patterns while fixing quasi-nulls in both. J Electromag Waves Appl. 1999;13(5):655–664.
  • Lopez P, Rodriguez JA, Ares F, et al. Subarray weighting for the difference patterns of monopulse antennas: joint optimization of subarray configurations and weights. IEEE Trans Antennas Propag. 2001;49(11):1606–1608.
  • Caorsi S, Massa A, Pastorino M, et al. Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans Antennas Propag. 2005;53(1):372–376.
  • D'Urso M, Isernia T, Meliado EF. An effective hybrid approach for the optimal synthesis of monopulse antennas. Transactions on Antennas and Propagation¡/DIFdel¿IEEE Trans Antennas Propag. 2007;55(4):1059–1066.
  • Manica L, Rocca P, Martini A, et al. An innovative approach based on a tree-searching algorithm for the optimal matching of independently optimum sum and difference excitations. IEEE Trans Antennas Propag. 2008;56(1):58–66.
  • Chen Y, Yang S, Nie Z. The application of a modified differential evolution strategy to some array pattern synthesis problems. IEEE Trans Antennas Propag. 2008;56(7):1919–1927.
  • Rocca P, Manica L, Azaro R, et al. A hybrid approach to the synthesis of subarrayed monopulse linear arrays. IEEE Trans Antennas Propag. 2009;57(1):280–283.
  • Rocca P, Manica L, Poli L, et al. Synthesis of compromise sum-difference arrays through time-modulation. IET Radar, Sonar & Navigation. 2009;3(6):630–637.
  • Kwak S, Chun J, Park D, et al. Asymmetric sum and difference beam pattern synthesis with a common weight vector. IEEE Antennas Wirel Propag Lett. 2016;15:1622–1625.
  • Cui C-Y, Jiao Y-C, Zhang L, et al. Synthesis of subarrayed monopluse arrays with contiguous elements using a DE algorithm. IEEE Trans Antennas Propag. 2017;65(8):4340–4345.
  • Ares F, Rodriguez JA, Moreno E, et al. Optimal compromise among sum and difference patterns. J Electromag Waves Appl. 1996;10(11):1543–1555.
  • Manica L, Rocca P, Benedetti M, et al. A fast graph-searching algorithm enabling the efficient synthesis of sub-arrayed planar monopulse antennas. IEEE Trans Antennas Propag. 2009;57(3):652–663.
  • Rocca P, Manica L, Poli L. Synthesis of monopulse time-modulated planar arrays with controlled sideband radiation. IET Radar, Sonar Navigation. 2012;6(6):432–442.
  • Xiong Z-Y, Xu Z-H, Zhang L, et al. Cluster analysis for the synthesis of subarrayed monopulse antennas. IEEE Trans Antennas Propag. 2014;62(4):1738–1749.
  • Rocca P, Morabito AF. Optimal synthesis of reconfigurable planar arrays with simplified architectures for monopulse radar applications. IEEE Trans Antennas Propag. 2015;63(3):1048–1058.
  • Park J, Lee J, Chun J, et al. Robust monopulse beam synthesis with sparse elements in linear and planar arrays with element failure detection. IET Radar, Sonar Navigation. 2017;11(8):1251–1258.
  • Folgueiras MÁ, Rodriguez Gonzalez JA, Pena FA. Optimal compromise among sum and difference patterns in monopulse antennas: use of subarrays and distributions with common aperture tail. J Electromag Waves Appl. 2009;23(17–18):2301–2311.
  • Alvarez-Folgueiras M, Rodriguez-Gonzalez JA, Ares-Pena F. Synthesising Taylor and Bayliss linear distributions with common aperture tail. Electron Lett. 2009;45(1):18–19.
  • Trucco A, Omodei E, Repetto P. Synthesis of sparse planar arrays. Electron Lett. 1997;33(22):1834–1835.
  • Trucco A. Weighting and thinning wide-band arrays by simulated annealing. Ultrasonics. 2002;40(1–8):485–489.
  • Hooker JW, Arora RK. Optimal thinning levels in linear arrays. IEEE Antennas Wirel Propag Lett. 2010;9:771–774.
  • Quevedo-Teruel O, Rajo-Iglesias E. Ant colony optimization in thinned array synthesis with minimum sidelobe level. IEEE Antennas Wirel Propag Lett. 2006;5:349–352.
  • Haupt RL. Thinned arrays using genetic algorithms. IEEE Trans Antennas Propag. 1994;42(7):993–999.
  • Liu Y, Liu QH, Nie Z. Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods. IEEE Trans Antennas Propag. 2014;62(2):652–660.
  • Morabito AF, Rocca P. Reducing the number of elements in phase-only reconfigurable arrays generating sum and difference patterns. IEEE Antennas Wirel Propag Lett. 2015;14:1338–1341.
  • Yan F, Yang P, Yang F, et al. An alternating iterative algorithm for the synthesis of complex-excitation and pattern reconfigurable planar sparse array. Signal Processing. 2017;135:179–187.
  • Yang F, Yang S, Chen Y, et al. A joint optimization approach for the synthesis of large 4-D heterogeneous antenna arrays. IEEE Trans Antennas Propag. 2017;65(9):4585–4594.
  • Yang F, Yang S, Chen Y, et al. Convex optimization of pencil beams through large-scale 4-D antenna arrays. IEEE Trans Antennas Propag. 2018;66(7):3453–3462.
  • Oliveri G, Gottardi G, Massa A. A new meta-paradigm for the synthesis of antenna arrays for future wireless communications. IEEE Trans Antennas Propag. 2019;67(6):3774–3788.
  • Morabito AF, Rocca P. Optimal synthesis of sum and difference patterns with arbitrary sidelobes subject to common excitations constraints. IEEE Antennas Wirel Propag Lett. 2010;9:623–626.
  • Boyd S, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004.
  • Keizer WP. Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast Fourier transforms of the array factor. IEEE Trans Antennas Propag. 2007;55(3):715–722.
  • Keizer WP. Amplitude-only low sidelobe synthesis for large thinned circular array antennas. IEEE Trans Antennas Propag. 2012;60(2):1157–1161.
  • Yang F, Yang S, Chen Y, et al. Synthesis of large-scale non-uniformly spaced 4D arrays using an IFT method. IET Microwave Antenna Propag. 2018;12(12):1973–1977.
  • Fuchs B, Skrivervik A, Mosig JR. Shaped beam synthesis of arrays via sequential convex optimizations. IEEE Antennas Wirel Propag Lett. 2013;12:1049–1052.
  • Nai SE, Ser W, Yu ZL, et al. Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization. IEEE Trans Antennas Propag. 2010;58(12):3923–3930.
  • Fuchs B. Synthesis of sparse arrays with focused or shaped beampattern via sequential convex optimizations. IEEE Trans Antennas Propag. 2012;60(7):3499–3503.
  • Prisco G, D'Urso M. Maximally sparse arrays via sequential convex optimizations. IEEE Antennas Wirel Propag Lett. 2012;11:192–195.
  • Cvx. Matlab software for disciplined convex programming. Available: http://cvxr.com/cvx/.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.