426
Views
6
CrossRef citations to date
0
Altmetric
Review

Microwave imaging of hidden crevasse in glacier terrain using metamaterial loaded eight-slot Vivaldi antenna

, , &
Pages 259-274 | Received 01 Apr 2019, Accepted 26 Nov 2019, Published online: 06 Dec 2019

References

  • Lever JH, Delaney AJ, Ray LE, et al. Autonomous GPR surveys using the Polar Rover Yeti. J Field Robot. 2013;30(2):194–215. doi: 10.1002/rob.21445
  • Colgan W, et al. An increase in crevasse extent, West Greenland: hydrologic implications. Geophys Res Lett. 2011;38:1–7. doi: 10.1029/2011GL048491
  • Williams RM, Ray LE, Lever JH, et al. Crevasse detection in ice sheets using ground penetrating radar and machine learning. IEEE J Sel Top Appl Earth Obs Remote Sens. 2014;7(12):4836–4848. doi: 10.1109/JSTARS.2014.2332872
  • Urbini S, Baskaradas JA. GPR as an effective tool for safety and glacier characterization: experiences and future development. Proceedings of the XIII Iinternational Conference on Ground Penetrating Radar; 2010; Lecce. p. 1–6.
  • Rohwer JA, Thompson M, Bickel DL, et al. An X-band crevasse detection radar for the Arctic and Antarctic. 2013 IEEE Radar Conference (RadarCon13); 2013; Ottawa, ON. p. 1–4.
  • Williams RM, Ray LE, Lever JH. Autonomous robotic ground penetrating radar surveys of ice sheets; using machine learning to identify hidden crevasses. 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings; 2012; Manchester. p. 7–12.
  • Delaney AJ, Arcone SA, O’Bannon A, et al. Crevasse detection with GPR across the Ross Ice Shelf, Antarctica. Proceedings of the Tenth International Conference on Grounds Penetrating Radar, 2004. GPR 2004; 2004; Delft, The Netherlands. p. 777–780.
  • Singh KK, Negi HS, Ganju A, et al. Crevasses detection in Himalayan glaciers using ground-penetrating radar. Curr Sci. 2013;105(9):1288–1295.
  • Hallikainen M, Ulaby F, Abdelrazik M. Dielectric properties of snow in the 3 to 37 GHz range. IEEE Trans Antennas Propag. 1986;34(11):1329–1340. doi: 10.1109/TAP.1986.1143757
  • Evans S. Dielectric properties of ice and snow–a review. J Glaciology. 1965;5(42):773–792. doi: 10.1017/S0022143000018840
  • Kumar RS, Akhter Z, Bhadouria VS, et al. Microwave reflectometry-based technique for detection of hidden crevasses in glacier. 2018 3rd International Conference on Microwave and Photonics (ICMAP); 2018; Dhanbad. p. 1–2.
  • Akhter Z, Akhtar MJ. Time domain microwave technique for dielectric imaging of multi-layered media. J Electromagnet Wave. 2015;29(3):386–401. doi: 10.1080/09205071.2014.997840
  • Gibson PJ. The Vivaldi aerial. 9th European. IEEE Microwave Conference; 1979.
  • Shin J, Schaubert DH. A parameter study of stripline-fed Vivaldi notch-antenna arrays. IEEE Trans Antennas Propag. 1999;47:879–886. doi: 10.1109/8.774151
  • Kumar P, Akhter Z, Jha AK, et al. Directivity enhancement of double slot Vivaldi antenna using anisotropic zero-index metamaterials. 2015 IEEE International Symposium on Antennas and Propagation & National Radio Science Meeting USNC/URSI; 2015 Jul 19–24. p. 2333–2334.
  • Bhaskar M, Johari E, Akhter Z, et al. Gain enhancement of the Vivaldi antenna with band notch characteristics using zero-index metamaterial. Microw Opt Techn Lett. 2016;58:233–238. doi: 10.1002/mop.29534
  • Gopikrishnan G, Akhter Z, Akhtar MJ. A novel corrugated four slot Vivaldi antenna loaded with metamaterial cells for microwave imaging. 2016 Asia-Pacific Microwave Conference (APMC); 2016; New Delhi. p. 1–4.
  • Wang Y-W, Wang G-M, Zong B-F. Directivity improvement of Vivaldi antenna using double-slot structure. IEEE Antennas Wireless Propag Lett. 2013;12:1380–1383. doi: 10.1109/LAWP.2013.2285182
  • Akhtar J. Microwave imaging: reconstruction of permittivity profiles. Magdeburg: Vdm Verlag Dr. Mueller; 2008.
  • Zinieris MM, Sloan R, Davis LE. A broadband microstrip-to-slot-line transition. Microw Opt Techn Lett. 1998;18:339–342. doi: 10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9
  • Shuppert B. Microstrip/slotline transitions: Modeling and experimental investigation. IEEE Trans Microw Theory Techn. 1988;36:1272–1282. doi: 10.1109/22.3669
  • Pozar DM. Microwave engineering. 3rd ed. Wiley India.
  • Uyanik C, Ertay AO, Dogu S, et al. A coplanar Vivaldi antenna design with improved frequency response for microwave breast imaging. 2016 IEEE Conference on Antenna Measurements & Applications (CAMA); 2016; Syracuse, NY. p. 1–3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.